scholarly journals AWSEM-MD: Protein Structure Prediction Using Coarse-Grained Physical Potentials and Bioinformatically Based Local Structure Biasing

2012 ◽  
Vol 116 (29) ◽  
pp. 8494-8503 ◽  
Author(s):  
Aram Davtyan ◽  
Nicholas P. Schafer ◽  
Weihua Zheng ◽  
Cecilia Clementi ◽  
Peter G. Wolynes ◽  
...  
2012 ◽  
Vol 102 (3) ◽  
pp. 619a ◽  
Author(s):  
Aram Davtyan ◽  
Weihua Zheng ◽  
Nicholas Schafer ◽  
Peter Wolynes ◽  
Garegin Papoian

2003 ◽  
Vol 53 (S6) ◽  
pp. 491-496 ◽  
Author(s):  
Kevin Karplus ◽  
Rachel Karchin ◽  
Jenny Draper ◽  
Jonathan Casper ◽  
Yael Mandel-Gutfreund ◽  
...  

2014 ◽  
Vol 12 (05) ◽  
pp. 1450022 ◽  
Author(s):  
Hamed Tabatabaei Ghomi ◽  
Jared J. Thompson ◽  
Markus A. Lill

Distance-based statistical potentials have long been used to model condensed matter systems, e.g. as scoring functions in differentiating native-like protein structures from decoys. These scoring functions are based on the assumption that the total free energy of the protein can be calculated as the sum of pairwise free energy contributions derived from a statistical analysis of pair-distribution functions. However, this fundamental assumption has been challenged theoretically. In fact the free energy of a system with N particles is only exactly related to the N-body distribution function. Based on this argument coarse-grained multi-body statistical potentials have been developed to capture higher-order interactions. Having a coarse representation of the protein and using geometric contacts instead of pairwise interaction distances renders these models insufficient in modeling details of multi-body effects. In this study, we investigated if extending distance-dependent pairwise atomistic statistical potentials to corresponding interaction functions that are conditional on a third interacting body, defined as quasi-three-body statistical potentials, could model details of three-body interactions. We also tested if this approach could improve the predictive capabilities of statistical scoring functions for protein structure prediction. We analyzed the statistical dependency between two simultaneous pairwise interactions and showed that there is surprisingly little if any dependency of a third interacting site on pairwise atomistic statistical potentials. Also the protein structure prediction performance of these quasi-three-body potentials is comparable with their corresponding two-body counterparts. The scoring functions developed in this study showed better or comparable performances compared to some widely used scoring functions for protein structure prediction.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


2014 ◽  
Vol 3 (5) ◽  
Author(s):  
S. Reiisi ◽  
M. Hashemzade-chaleshtori ◽  
S. Reisi ◽  
H. Shahi ◽  
S. Parchami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document