Electronic Polarization Effects upon Charge Injection in Oligoacene Molecular Crystals: Description via a Polarizable Force Field

2013 ◽  
Vol 117 (27) ◽  
pp. 13853-13860 ◽  
Author(s):  
Sean M. Ryno ◽  
Stephen R. Lee ◽  
John S. Sears ◽  
Chad Risko ◽  
Jean-Luc Brédas
2020 ◽  
Author(s):  
Jian Zhu ◽  
Jing Huang

<div>Methylguanidinium is an important molecular ion which also serves as the model compound for arginine side chain. We studied the structure and dynamics of methylguanidium ion at the air/water interface by molecular dynamics simulations employing the Drude polarizable force field. We found out that methylguanidinium accumulate on the interface with a majority adopting tilted conformations. We also demonstrated that methylguanidinium and guanidinium ions have different preference towards the air/water interface. Our results illustrate the importance to explicitly include the electronic polarization effects in modeling interfacial properties.</div><div><br> </div>


2020 ◽  
Author(s):  
Jian Zhu ◽  
Jing Huang

<div>Methylguanidinium is an important molecular ion which also serves as the model compound for arginine side chain. We studied the structure and dynamics of methylguanidium ion at the air/water interface by molecular dynamics simulations employing the Drude polarizable force field. We found out that methylguanidinium accumulate on the interface with a majority adopting tilted conformations. We also demonstrated that methylguanidinium and guanidinium ions have different preference towards the air/water interface. Our results illustrate the importance to explicitly include the electronic polarization effects in modeling interfacial properties.</div><div><br> </div>


2020 ◽  
Author(s):  
Jian Zhu ◽  
Jing Huang

<div>Methylguanidinium is an important molecular ion which also serves as the model compound for arginine side chain. We studied the structure and dynamics of methylguanidium ion at the air/water interface by molecular dynamics simulations employing the Drude polarizable force field. We found out that methylguanidinium accumulate on the interface with a majority adopting tilted conformations. We also demonstrated that methylguanidinium and guanidinium ions have different preference towards the air/water interface. Our results illustrate the importance to explicitly include the electronic polarization effects in modeling interfacial properties.</div><div><br> </div>


2021 ◽  
Author(s):  
Zhi Yue ◽  
Zhi Wang ◽  
Gregory A Voth

Fluoride channels (Fluc) export toxic F- from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the transport mechanism at the molecular level has remained elusive. Herein we have applied constant-pH molecular dynamics and free energy sampling methods to investigate fluoride transfer through a Fluc protein from Escherichia coli. We find that fluoride is facile to transfer in its charged form, i.e., F-, by traversing through a non-bonded network. The extraordinary F- selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F- transfer rate calculated using an electronically polarizable force field is significantly more accurate compared to the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F- - Fluc interactions.


1999 ◽  
Vol 110 (2) ◽  
pp. 741-754 ◽  
Author(s):  
Jay L. Banks ◽  
George A. Kaminski ◽  
Ruhong Zhou ◽  
Daniel T. Mainz ◽  
B. J. Berne ◽  
...  

2005 ◽  
Vol 109 (14) ◽  
pp. 6705-6713 ◽  
Author(s):  
Sergei Yu. Noskov ◽  
Guillaume Lamoureux ◽  
Benoît Roux

2018 ◽  
Vol 149 (17) ◽  
pp. 174502 ◽  
Author(s):  
Saber Naserifar ◽  
William A. Goddard

Sign in / Sign up

Export Citation Format

Share Document