repair enzyme
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 68)

H-INDEX

69
(FIVE YEARS 5)

ChemMedChem ◽  
2021 ◽  
Author(s):  
Mark Berney ◽  
Manav T Manoj ◽  
Ellen Mary Fay ◽  
Joanna Francelle McGouran

iScience ◽  
2021 ◽  
pp. 103470
Author(s):  
Nicolas Kunath ◽  
Anna Maria Bugaj ◽  
Pegah Bigonah ◽  
Marion Silvana Fernandez-Berrocal ◽  
Magnar Bjørås ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Zhao ◽  
Lei Zeng ◽  
Jiaming Luo ◽  
Ji Li ◽  
Luying Lai ◽  
...  

Bupivacaine, a local anesthetic widely used for regional anesthesia and pain management, has been reported to induce neuronal injury, especially DNA damage. Neurons employ different pathways to repair DNA damage. However, the mechanism underlying bupivacaine-mediated DNA damage repair is unclear. A rat neuronal injury model was established by intrathecal injection of (3%) bupivacaine. An in vitro neuronal injury model was generated by exposing SH-SY5Y cells to bupivacaine (1.5 mmol/L). Then, a cDNA plate array was used to identify the DNA repair genes after bupivacaine exposure. The results showed that xeroderma pigmentosum complementary group D (XPD) of the nuclear excision repair (NER) pathway was closely associated with the repair of DNA damage induced by bupivacaine. Subsequently, Western blot assay and immunohistochemistry indicated that the expression of the repair enzyme XPD was upregulated after DNA damage. Downregulation of XPD expression by a lentivirus aggravated the DNA damage induced by bupivacaine. In addition, phosphatidyl-3-kinase (PI3K)/AKT signaling in neurons was inhibited after exposure to bupivacaine. After PI3K/AKT signaling was inhibited, bupivacaine-mediated DNA damage was further aggravated, and the expression of XPD was further upregulated. However, knockdown of XPD aggravated bupivacaine-mediated neuronal injury but did not affect PI3K/AKT signaling. In conclusion, the repair enzyme XPD, which was partially regulated by PI3K/AKT signaling, responded to bupivacaine-mediated neuronal DNA damage. These results can be used as a reference for the treatment of bupivacaine-induced neurotoxicity.


2021 ◽  
Author(s):  
Monisha Mohan ◽  
Roy Anindya

ABSTRACTThe human DNA repair enzyme AlkB homologue-2 and 3 (ALKBH2 and ALKKBH3) repairs methyl adducts from genomic DNA. Overexpression of ALKBH2 and ALKBH3 has been implicated in both tumorigenesis and chemotherapy resistance in some cancers, including glioblastoma and renal cancer rendering it a potential therapeutic target and a diagnostic marker. However, no inhibitor is available against these important DNA repair proteins. Intending to repurpose a drug as an inhibitor of ALKBH2/ALKBH3, we performed in silico evaluation of HIV protease inhibitors and identified Ritonavir as an ALKBH2-interacting molecule. Using molecular dynamics simulation, we elucidated the molecular details of Ritonavir-ALKBH2 interaction. The present work highlights that Ritonavir might be used to target the ALKBH2-mediated DNA alkylation repair.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Bernhard N. Bohnert ◽  
Irene Gonzalez-Menendez ◽  
Thomas Dörffel ◽  
Jonas C. Schneider ◽  
Mengyun Xiao ◽  
...  

ABSTRACT Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg−/−) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Vol 46 ◽  
pp. 116369
Author(s):  
Mark Berney ◽  
William Doherty ◽  
Werner Theodor Jauslin ◽  
Manav T Manoj ◽  
Eva-Maria Dürr ◽  
...  
Keyword(s):  

2021 ◽  
Vol 28 ◽  
pp. 128-134
Author(s):  
O. V. Pidpala ◽  
L. L. Lukash

Aim.To analyze the distribution of species-specific mobile genetic elements (MGE) in orthologs of the MGMT gene in Platyrrhina. Methods. The homology between nucleotide sequences was determined by BLAST 2.6.1. The results of the search and identification of MGE were performed  using  the  CENSOR program. Results. On the example of orthologs of the MGMT gene in New World monkeys, it has been shown that different species-specific MGE identified in their intron sequences may have different evolutionary chronologies. In the case of the element Alu2_TS, which originated in the Tarsiiformes representative, it was found that in evolutionarily close primates it undergoes deletion degradation, while fragments of the human-specific L1Hs element are found in the genomes of evolutionarily distant primates long before the formation and emergence of this retroelement. Conclusions. The chronology of  evolutionary changes in the gene MGMT and its species-specific MGE can be of different nature and occur in parallele and independently. Keywords: Platyrrhina, MGMT gene, MGE, Alu2_TS, L1Hs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanaya Chatterjee ◽  
Gaurav Das ◽  
Surajit Ghosh ◽  
Pinak Chakrabarti

AbstractFibrillation of peptides and proteins is implicated in various neurodegenerative diseases and is a global concern. Aging leads to the formation of abnormal isoaspartate (isoAsp) residues from isomerization of normal aspartates in proteins, triggering fibril formation that leads to neurodegenerative diseases. Protein L-isoaspartyl methyltransferase (PIMT) is a repair enzyme which recognizes and converts altered isoAsp residues back to normal aspartate. Here we report the effect of gold nanoparticles (AuNPs) of different sizes on the structure and function of PIMT. Spherical AuNPs, viz. AuNS5, AuNS50 and AuNS100 (the number indicating the diameter in nm) stabilize PIMT, with AuNS100 exhibiting the best efficacy, as evident from various biophysical experiments. Isothermal titration calorimetry (ITC) revealed endothermic, but entropy driven mode of binding of PIMT with all the three AuNSs. Methyltransferase activity assay showed enhanced activity of PIMT in presence of all AuNSs, the maximum being with AuNS100. The efficacy of PIMT in presence of AuNS100 was further demonstrated by the reduction of fibrillation of Aβ42, the peptide that is implicated in Alzheimer’s disease. The enhancement of anti-fibrillation activity of PIMT with AuNS100 was confirmed from cell survival assay with PC12 derived neuronal cells against Aβ42 induced neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document