Effect of H2SO4and Alkali Metal SO42-/HSO4-Salt Solutions on Surface Water Molecules Using Sum Frequency Generation

1999 ◽  
Vol 103 (14) ◽  
pp. 2789-2795 ◽  
Author(s):  
Steve Baldelli ◽  
Cheryl Schnitzer ◽  
D. J. Campbell ◽  
Mary Jane Shultz
2018 ◽  
Author(s):  
Daniel R. Moberg ◽  
Shelby C. Straight ◽  
Francesco Paesani

<div> <div> <div> <p>The temperature dependence of the vibrational sum-frequency generation (vSFG) spectra of the the air/water interface is investigated using many-body molecular dynamics (MB-MD) simulations performed with the MB-pol potential energy function. The total vSFG spectra calculated for different polarization combinations are then analyzed in terms of molecular auto-correlation and cross-correlation contributions. To provide molecular-level insights into interfacial hydrogen-bonding topologies, which give rise to specific spectroscopic features, the vSFG spectra are further investigated by separating contributions associated with water molecules donating 0, 1, or 2 hydrogen bonds to neighboring water molecules. This analysis suggests that the low frequency shoulder of the free OH peak which appears at ∼3600 cm−1 is primarily due to intermolecular couplings between both singly and doubly hydrogen-bonded molecules. </p> </div> </div> </div>


2018 ◽  
Vol 20 (4) ◽  
pp. 2809-2813 ◽  
Author(s):  
Ryoji Kusaka ◽  
Masayuki Watanabe

Eu3+ at an extractant/water interface is bound to extractants from the upper side and to water molecules from the lower side, and forms a unique interfacial complex.


2018 ◽  
Author(s):  
Merve Dogangun ◽  
Paul E. Ohno ◽  
Dongyue Liang ◽  
Alicia C. McGeachy ◽  
Ariana Gray Be ◽  
...  

<div> <div> <p>We report vibrational sum frequency generation (SFG) spectra in which the C–H stretches of lipid alkyl tails in fully hydrogenated single- and dual-component supported lipid bilayers are detected along with the O–H stretching continuum above the bilayer. As the salt concentration is increased from ~10 μM to 0.1 M, the SFG intensities in the O–H stretching region decrease by a factor of 2, consistent with significant absorptive-dispersive mixing between χ(2) and χ(3) contributions to the SFG signal generation process from charged interfaces. A method for estimating the surface potential from the second-order spectral lineshapes (in the OH stretching region) is presented and discussed in the context of choosing truly zero-potential reference states. Aided by atomistic simulations, we find that the strength and orientation distribution of the hydrogen bonds over the purely zwitterionic bilayers are largely invariant between sub-micromolar and hundreds of millimolar concentrations. However, specific interactions between water molecules and lipid headgroups are observed upon replacing phosphocholine (PC) lipids with negatively charged phosphoglycerol (PG) lipids, which coincides with SFG signal intensity reductions in the 3100 cm-1 to 3200 cm-1 frequency region. The atomistic simulations show that this outcome is consistent with a small, albeit statistically significant, decrease in the number of water molecules adjacent to both the lipid phosphate and choline moieties per unit area, supporting the SFG observations. Ultimately, the ability to probe hydrogen-bond networks over lipid bilayers holds the promise of opening paths for understanding, controlling, and predicting specific and non-specific interactions between membranes and ions, small molecules, peptides, polycations, proteins, and coated and uncoated nanomaterials.<br></p></div></div>


Author(s):  
Merve Dogangun ◽  
Paul E. Ohno ◽  
Dongyue Liang ◽  
Alicia C. McGeachy ◽  
Ariana Gray Be ◽  
...  

<div> <div> <p>We report vibrational sum frequency generation (SFG) spectra in which the C–H stretches of lipid alkyl tails in fully hydrogenated single- and dual-component supported lipid bilayers are detected along with the O–H stretching continuum above the bilayer. As the salt concentration is increased from ~10 μM to 0.1 M, the SFG intensities in the O–H stretching region decrease by a factor of 2, consistent with significant absorptive-dispersive mixing between χ(2) and χ(3) contributions to the SFG signal generation process from charged interfaces. A method for estimating the surface potential from the second-order spectral lineshapes (in the OH stretching region) is presented and discussed in the context of choosing truly zero-potential reference states. Aided by atomistic simulations, we find that the strength and orientation distribution of the hydrogen bonds over the purely zwitterionic bilayers are largely invariant between sub-micromolar and hundreds of millimolar concentrations. However, specific interactions between water molecules and lipid headgroups are observed upon replacing phosphocholine (PC) lipids with negatively charged phosphoglycerol (PG) lipids, which coincides with SFG signal intensity reductions in the 3100 cm-1 to 3200 cm-1 frequency region. The atomistic simulations show that this outcome is consistent with a small, albeit statistically significant, decrease in the number of water molecules adjacent to both the lipid phosphate and choline moieties per unit area, supporting the SFG observations. Ultimately, the ability to probe hydrogen-bond networks over lipid bilayers holds the promise of opening paths for understanding, controlling, and predicting specific and non-specific interactions between membranes and ions, small molecules, peptides, polycations, proteins, and coated and uncoated nanomaterials.<br></p></div></div>


2018 ◽  
Author(s):  
Daniel R. Moberg ◽  
Shelby C. Straight ◽  
Francesco Paesani

<div> <div> <div> <p>The temperature dependence of the vibrational sum-frequency generation (vSFG) spectra of the the air/water interface is investigated using many-body molecular dynamics (MB-MD) simulations performed with the MB-pol potential energy function. The total vSFG spectra calculated for different polarization combinations are then analyzed in terms of molecular auto-correlation and cross-correlation contributions. To provide molecular-level insights into interfacial hydrogen-bonding topologies, which give rise to specific spectroscopic features, the vSFG spectra are further investigated by separating contributions associated with water molecules donating 0, 1, or 2 hydrogen bonds to neighboring water molecules. This analysis suggests that the low frequency shoulder of the free OH peak which appears at ∼3600 cm−1 is primarily due to intermolecular couplings between both singly and doubly hydrogen-bonded molecules. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document