Thin Film Drainage:  Hydrodynamic and Disjoining Pressures Determined from Experimental Measurements of the Shape of a Fluid Drop Approaching a Solid Wall

Langmuir ◽  
2006 ◽  
Vol 22 (6) ◽  
pp. 2610-2619 ◽  
Author(s):  
Roger G. Horn ◽  
Mohammed Asadullah ◽  
Jason N. Connor
Langmuir ◽  
2005 ◽  
Vol 21 (18) ◽  
pp. 8243-8249 ◽  
Author(s):  
Lucy Y. Clasohm ◽  
Jason N. Connor ◽  
Olga I. Vinogradova ◽  
Roger G. Horn

2000 ◽  
Vol 112 (14) ◽  
pp. 6424-6433 ◽  
Author(s):  
Roger G. Horn ◽  
Olga I. Vinogradova ◽  
Michael E. Mackay ◽  
Nhan Phan-Thien
Keyword(s):  

1989 ◽  
Vol 44 (2) ◽  
pp. 387-391 ◽  
Author(s):  
S. Hartland ◽  
S.A.K. Jeelani ◽  
A. Suter

Langmuir ◽  
2013 ◽  
Vol 29 (11) ◽  
pp. 3594-3603 ◽  
Author(s):  
Louxiang Wang ◽  
David Sharp ◽  
Jacob Masliyah ◽  
Zhenghe Xu

Author(s):  
Zhe Wang ◽  
Biagio Mandrachia ◽  
Vincenzo Ferraro ◽  
Ernesto Di Maio ◽  
Pier Luca Maffettone ◽  
...  

Author(s):  
Jonathan C. Hui ◽  
Peter Huang

In many multiphase fluidic processes, such as in petroleum extraction and biochemical analysis involving microscale conduits, the lodging of immiscible droplets often leads to disastrous flow blockage. Without a thin-film lubrication layer surrounding the adhered droplets, a significantly higher threshold pressure gradient is required to reinitiate bulk flows. In this work, we investigate the surface tension-driven thin-film drainage process that leads to droplet adhesion and study how electrostatic repulsion between a charged droplet interface and a charged conduit wall can prevent direct contact between the two. We report on our multiphysics computational results of an oversized gas droplet in a water-filled flow microchannel under the influence of surface tension and interfacial electrostatic forces.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Hamid Reza Seyf ◽  
Yuwen Zhang

Molecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.


Sign in / Sign up

Export Citation Format

Share Document