gas bubbles
Recently Published Documents


TOTAL DOCUMENTS

1768
(FIVE YEARS 229)

H-INDEX

72
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 575
Author(s):  
Mariola Saternus ◽  
Tomasz Merder

Obtaining high-quality aluminum is associated with the use of an effective method of refining, which is argon-purging, in which gas bubbles are introduced into the liquid metal by means of rotary impellers. Various rotary impellers are used in the industry; however, if a newly designed impeller is constructed, it should be tested prior to industrial use. For this purpose, physical modeling is used, which enables the investigation of the phenomena occurring during refining and the selection of optimal processing parameters without costly research carried out in the industry. The newly designed rotary impeller was tested on the physical model of a URO-200 batch reactor. The flow rate of refining gas was: 10, 15 and 20 dm3·min−1, whereas rotary impeller speed was 300, 400 and 500 rpm. The research consists of a visualization test showing the schemes of the gas bubbles’ dispersion level in the liquid metal and experiments for removing oxygen from water, which is an analogue of removing hydrogen from aluminum.


Author(s):  
Abhinav Bhanawat ◽  
Keyong Zhu ◽  
Laurent Pilon

This paper aims to systematically investigate the effect of gas bubbles formation on the performance of a horizontal photoelectrode exposed to normally incident light during photoelectrochemical water splitting. The presence...


Author(s):  
Guanqi Tao ◽  
Jalil Manafian ◽  
Onur Alp İlhan ◽  
Syed Maqsood Zia ◽  
Latifa Agamalieva

In this paper, we check and scan the (3+1)-dimensional variable-coefficient nonlinear wave equation which is considered in soliton theory and generated by considering the Hirota bilinear operators. We retrieve some novel exact analytical solutions, including cross-kink soliton solutions, breather wave solutions, interaction between stripe and periodic, multi-wave solutions, periodic wave solutions and solitary wave solutions for the (3+1)-dimensional variable-coefficient nonlinear wave equation in liquid with gas bubbles by Maple symbolic computations. The required conditions of the analyticity and positivity of the solutions can be easily achieved by taking special choices of the involved parameters. The main ingredients for this scheme are to recover the Hirota bilinear forms and their generalized equivalences. Lastly, the graphical simulations of the exact solutions are depicted.


2021 ◽  
Author(s):  
Alan Ianeselli ◽  
Damla Tetiker ◽  
Julian Stein ◽  
Alexandra Kühnlein ◽  
Christof B. Mast ◽  
...  

AbstractKey requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.


Langmuir ◽  
2021 ◽  
Author(s):  
Thy D. U. Phan ◽  
An H. T. Phan ◽  
Khoa C. M. Le ◽  
Thi H. Le ◽  
Khoi T. Nguyen
Keyword(s):  

2021 ◽  
Vol 931 ◽  
Author(s):  
Alexander A. Doinikov ◽  
Gabriel Regnault ◽  
Cyril Mauger ◽  
Philippe Blanc-Benon ◽  
Claude Inserra

An analytical theory is developed that describes acoustic microstreaming produced by two interacting bubbles. The bubbles are assumed to undergo axisymmetric oscillation modes, which can include radial oscillations, translation and shape modes. Analytical solutions are derived in terms of complex amplitudes of oscillation modes, which means that the modal amplitudes are assumed to be known and serve as input data when the velocity field of acoustic microstreaming is calculated. No restrictions are imposed on the ratio of the bubble radii to the viscous penetration depth and the distance between the bubbles. The interaction between the bubbles is considered both when the linear velocity field is calculated and when the second-order velocity field of acoustic microstreaming is calculated. Capabilities of the analytical theory are illustrated by computational examples.


Sign in / Sign up

Export Citation Format

Share Document