Novel Anion-Tuning Supramolecular Gels with Dual-Channel Response: Reversible Sol−Gel Transition and Color Changes

Langmuir ◽  
2010 ◽  
Vol 26 (11) ◽  
pp. 9040-9044 ◽  
Author(s):  
Jia-Wei Liu ◽  
Yong Yang ◽  
Chuan-Feng Chen ◽  
Jian-Tai Ma
2015 ◽  
Vol 51 (61) ◽  
pp. 12224-12227 ◽  
Author(s):  
Qi Lin ◽  
Tao-Tao Lu ◽  
Jin-Chao Lou ◽  
Gui-Yuan Wu ◽  
Tai-Bao Wei ◽  
...  

By “keto–enol tautomerization”, gelator G3 can be self-assembled into a stable organogel (OG3) accompanied by strong aggregation induced emission (AIE). OG3 could dual-channel sense S2− with specific selectivity via reversible sol–gel transition and fluorescent changes.


Gels ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 16
Author(s):  
Ka Young Kim ◽  
Mirae Ok ◽  
Jaehyeong Kim ◽  
Sung Ho Jung ◽  
Moo Lyong Seo ◽  
...  

Two pyrene derivatives having the perylenediimide (1) or the alky chain (2) in the middle of molecules were synthesized. Co-assembled supramolecular gels were prepared at different molar ratios of 0.2, 0.5, and 0.8 equiv. of 2 to 1. By SEM observation, the morphology of co-assembled supramolecular gels changed from spherical nanoparticles to three-dimensional network nanofibers as the ratio of 2 increased. In addition, the pyrene-excimer emission of co-assembled gels increased with increasing concentration of 2, and was stronger when compared with the condition without 1 or 2, indicating the formation of pyrene interaction between 1 and 2. In addition, the sol-gel transition was found to be reversible over repeated measurement by tube inversion method. The rheological properties of co-assembled supramolecular gels were also improved by increasing the ratio of 2, due to the increased nanoscale flexibility of supramolecular packing by introducing alkyl chain groups through heterogeneous pyrene interaction. These findings suggest that macroscale mechanical strength of co-assembled supramolecular gel was strongly influenced by nanoscale flexibility of the supramolecular packing.


1994 ◽  
Vol 91 ◽  
pp. 901-908 ◽  
Author(s):  
H Zanni ◽  
P Nieto ◽  
L Fernandez ◽  
R Couty ◽  
P Barret ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Emanuele Mauri ◽  
Sara Maria Giannitelli ◽  
Marcella Trombetta ◽  
Alberto Rainer

Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.


Langmuir ◽  
2021 ◽  
Author(s):  
Lucas S. Ribeiro ◽  
Renata L. Sala ◽  
Leticia A. O. de Jesus ◽  
Sandra A. Cruz ◽  
Emerson R. Camargo

Sign in / Sign up

Export Citation Format

Share Document