gel transition
Recently Published Documents


TOTAL DOCUMENTS

816
(FIVE YEARS 110)

H-INDEX

55
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Akihiro Tanaka ◽  
Tomomi Nakano ◽  
Kento Watanabe ◽  
Kazutoshi Masuda ◽  
Shuichi Kamata ◽  
...  

AbstractTardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective cytoplasmic-abundant heat-soluble (CAHS) proteins which are essential for the anhydrobiotic survival of tardigrades. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through comprehensive analysis, we identified 336 such proteins, collectively dubbed “dehydration-induced reversibly condensing proteins (DRPs)”. Unexpectedly, we rediscovered CAHS proteins as highly enriched in DRPs, 3 of which were major components of DRPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro, which increases the mechanical strength of cell-like microdroplets. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeletal proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and contribute to the exceptional stability of dehydrated tardigrades.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pedro Alhais Lopes ◽  
Bruno C. Santos ◽  
Anibal T. de Almeida ◽  
Mahmoud Tavakoli

AbstractIntegration of solid-state microchips into soft-matter, and stretchable printed electronics has been the biggest challenge against their scalable fabrication. We introduce, Pol-Gel, a simple technique for self-soldering, self-encapsulation, and self-healing, that allows low cost, scalable, and rapid fabrication of hybrid microchip-integrated ultra-stretchable circuits. After digitally printing the circuit, and placing the microchips, we trigger a Polymer-Gel transition in physically cross-linked block copolymers substrate, and silver liquid metal composite ink, by exposing the circuits to the solvent vapor. Once in the gel state, microchips penetrate to the ink and the substrate (Self-Soldering), and the ink penetrates to the substrate (Self-encapsulation). Maximum strain tolerance of ~1200% for printed stretchable traces, and >500% for chip-integrated soft circuits is achieved, which is 5x higher than the previous works. We demonstrate condensed soft-matter patches and e-textiles with integrated sensors, processors, and wireless communication, and repairing of a fully cut circuits through Pol-Gel.


Author(s):  
M. A. Vidales-Hurtado ◽  
A. I. Caudana-Campos ◽  
R. A. Mauricio-Sánchez ◽  
G. Méndez-Montealvo ◽  
F. Caballero-Briones ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Prakash Parajuli ◽  
Sanjit Acharya ◽  
Julia L. Shamshina ◽  
Noureddine Abidi

AbstractIn this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose solutions in the presence of salts. The specific focus of the study was  on the evaluation of the effect of salts’ addition on the sol–gel transition of the cellulose solutions and on their ability to form monoliths, as well as the evaluation of the morphology (e.g., specific surface area, pore characteristics, and microstructure) of aerocelluloses prepared from these solutions. The effect of the salt addition on the sol–gel transition of cellulose solutions was studied using rheology, and morphology of resultant aerogels was evaluated by scanning electron microscopy and Brunauer–Emmett–Teller analysis, while the salt influence on the aerocelluloses’ crystalline structure and thermal stability was evaluated using powder X-ray diffraction and thermogravimetric analysis, respectively. The study revealed that the effect of salts’ addition was dependent on the component ions and their concentration. The addition of salts in the amount below certain concentration limit significantly improved the ability of the cellulose solutions to form monoliths and reduced the sol–gel transition time. Salts of lower cationic radii had a greater effect on gelation. However, excessive amount of salts resulted in the formation of fragile monoliths or no formation of gels at all. Analysis of surface morphology demonstrated that the addition of salts resulted in a significant increase in porosity and specific surface area, with salts of lower cationic radii leading to aerogels with much larger (~ 1.5 and 1.6-fold for LiCl and MgCl2, respectively) specific surface area compared to aerocelluloses prepared with no added salt. Thus, by adding the appropriate salt into the cellulose solution prior to gelation, the properties of aerocelluloses that control material’s performance (specific surface area, density, and porosity) could be tailored for a specific application. Graphic abstract


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 78
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document