Cell Dynamics Simulations of Microphase Separation in Block Copolymers

2001 ◽  
Vol 34 (1) ◽  
pp. 116-126 ◽  
Author(s):  
S. R. Ren ◽  
I. W. Hamley
2016 ◽  
pp. 283-298
Author(s):  
Xuehao He ◽  
Xuejin Li ◽  
Peng Chen ◽  
Haojun Liang

2012 ◽  
Vol 512-515 ◽  
pp. 2127-2130
Author(s):  
Li Huo ◽  
Cai Xia Dong

The mechanical properties were investigated of a series of PA-PEG thermalplastic elastomer based on PA1010 and polytetramethylene glycol (PEG) with varying hard and soft segment content. Dynamic mechanical measurements of these polymers have carried out over a wide range of temperatures. The block copolymers exhibit three peaks, designated as α, β and γ in the tanδ-temperature curve. The α transition shifts to higher temperature with increasing hard block molecular weight. However, at a constant hard molecular weight, the α transition shifts to higher temperature and the damping increases on increasing the soft segment molecular weight. DMA results show that the block copolymers exhibit a microphase separation structure and both soft and hard segments were found to be crystallizable. The degree of phase separation increases with increasing hard block molecular weight.


RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1514-1521 ◽  
Author(s):  
Xiaokang Li ◽  
Feng Huang ◽  
Tao Jiang ◽  
Xiaohua He ◽  
Shaoliang Lin ◽  
...  

The microphase separation of side chain liquid crystalline (SCLC) block copolymers was studied using dissipative particle dynamics (DPD) simulations.


Sign in / Sign up

Export Citation Format

Share Document