hard segments
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 48)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
Marina A. Gorbunova ◽  
Evgenii V. Komov ◽  
Leonid Yu. Grunin ◽  
Mariya S. Ivanova ◽  
Ainur F. Abukaev ◽  
...  

Control of the phase separation process of soft and hard segments by selecting diisocyanates and by varying the thermal program allows defining the final degree of crystallinity and phase composition of TPUs.


ACS Nano ◽  
2021 ◽  
Author(s):  
Xiaochen Xun ◽  
Xuan Zhao ◽  
Qi Li ◽  
Bin Zhao ◽  
Tian Ouyang ◽  
...  

2021 ◽  
Vol 2094 (4) ◽  
pp. 042077
Author(s):  
V Yu Senichev ◽  
E V Pogorel’tsev

Abstract The relationship between the structure of the polymer chains and the abrasion resistance of segmented polyurethane ureas based on polyoxytetramethylene oligoether was studied. Experimental data were obtained for systems with the hard segments content above 39%. It was found that the function of the volumetric wear of polyurethane-urea samples on the content of hard segments had an extremum; at high contents of these segments (more than 35%), a further increase in this content lead to a deterioration in the abrasion resistance. The reasons for this effect can be associated with a sharp deterioration in the strength and strain properties of the studied elastomers when additional amounts of diisocyanate are introduced into the system, which can lead to the formation of excessive interchain bonds.


Author(s):  
Ewa Głowińska ◽  
Paulina Kasprzyk ◽  
Janusz Datta

AbstractA considerable number of research works focus on the positive influence of cellulose on the properties of polymer-based composites and their wide range of application possibilities. The present work is focused on the synthesis of novel bio-based polyurethane (bio-PU) composites filled with powdered cellulose (microcellulose, MC) in an amount of 5 wt.%. Bio-PU composites were synthesized via a non-solvent prepolymer method. First, the prepolymer was synthesized from diisocyanate mixture based on hexamethylene diisocyanate and bio-based polyisocyanate Tolonate™ X Flo 100 and α,ω-oligo(ethylene-butylene adipate)diol which contained cellulose. Then, resulted prepolymer was extended by bio-based 1,4 butanediol (bio-BDO). Bio-PU composites were obtained with the different [NCO]/[OH] molar ratios: 0.95, 1.0, 105 and 1.1. Special attention was paid to the influence of MC on the phase separation between soft and hard segments of bio-PU by studying the chemical structure, morphology and thermal and mechanical properties of the prepared cellulose-based composites.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3055
Author(s):  
Ismael Sánchez-Calderón ◽  
Victoria Bernardo ◽  
Mercedes Santiago-Calvo ◽  
Haneen Naji ◽  
Alberto Saiani ◽  
...  

In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm.


2021 ◽  
Vol 41 (9) ◽  
pp. 799-807
Author(s):  
Farhad Sadeghi ◽  
David Le

Abstract Tubes from nylon 12 and Pebax 6333 resins were produced using an extrusion process. The extruded tubes were used to produce balloons for angioplasty applications. The tubes were stretched using blow molding process to produce balloons. Melt rheology behavior for nylon 12 and Pebax were studied and nylon 12 showed a more pronounced shear thinning behavior compared to Pebax. Orientations of the tubes and the balloons were assessed using Fourier transform infrared spectroscopy (FTIR) and it was found that nylon material is more sensitive to molecular orientation when stretched compared to Pebax material. Melting behavior for the tubes and balloons were investigated using dynamic scanning calorimetry (DSC). The melting temperature shifted to higher temperatures when the tubes are stretched into balloons and the shift was more pronounced for Pebax balloon than nylon. Morphology of Pebax balloon surface revealed a hybrid structure consisting of hard segments dispersed in soft segments and amorphous phases. The hard segments are crystallized polyamides that are biaxially oriented in the balloon with higher molecular orientation in the radial direction compared to axial direction. This resulted in a higher tensile strength along the radial direction compared to axial for the balloons. Dynamic mechanical analyzer (DMA) tests showed that the glass transition temperature of the nylon tubes shifted to higher temperatures (from 51 to 82 °C) during the balloon forming process, which means the nylon becomes stiffer and less flexible when formed into a balloon.


2021 ◽  
Vol 22 (14) ◽  
pp. 7438
Author(s):  
Paulina Kasprzyk ◽  
Ewa Głowińska ◽  
Paulina Parcheta-Szwindowska ◽  
Kamila Rohde ◽  
Janusz Datta

This study concerns green thermoplastic polyurethanes (TPU) obtained by controlling the chemical structure of flexible segments. Two types of bio-based polyether polyols—poly(trimethylene glycol)s—with average molecular weights ca. 1000 and 2700 Da were used (PO3G1000 and PO3G2700, respectively). TPUs were prepared via a two-step method. Hard segments consisted of 4,4′-diphenylmethane diisocyanates and the bio-based 1,4-butanodiol (used as a chain extender and used to control the [NCO]/[OH] molar ratio). The impacts of the structure of flexible segments, the amount of each type of prepolymer, and the [NCO]/[OH] molar ratio on the chemical structure and selected properties of the TPUs were verified. By regulating the number of flexible segments of a given type, different selected properties of TPU materials were obtained. Thermal analysis confirmed the high thermal stability of the prepared materials and revealed that TPUs based on a higher amount of prepolymer synthesized from PO3G2700 have a tendency for cold crystallization. An increase in the amount of PO3G1000 at the flexible segments caused an increase in the tensile strength and decrease in the elongation at break. Melt flow index results demonstrated that the increase in the amount of prepolymer based on PO3G1000 resulted in TPUs favorable in terms of machining.


Sign in / Sign up

Export Citation Format

Share Document