block copolymer
Recently Published Documents


TOTAL DOCUMENTS

9263
(FIVE YEARS 1296)

H-INDEX

186
(FIVE YEARS 17)

2022 ◽  
Author(s):  
Hong Li ◽  
Muhammad Mumtaz ◽  
Takuya Isono ◽  
Toshifumi Satoh ◽  
Wen-Chang Chen ◽  
...  

2022 ◽  
Author(s):  
Rachel Kapelner ◽  
Allie Obermeyer

Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, POEGMA79-b-qP4VP175, was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte-complexes to deliver anionic proteins intracellularly as well as the importance of correlating solution structure and desired functional activity.


ACS Omega ◽  
2022 ◽  
Author(s):  
José L. Ramírez-Colón ◽  
Xaimara Santiago-Maldonado ◽  
Simara Laboy-López ◽  
Pedro O. Méndez Fernández ◽  
Marielys Torres-Díaz ◽  
...  

2022 ◽  
pp. 2100417
Author(s):  
Kuanchun Shao ◽  
Wenlong Zhang ◽  
Jiajia Shen ◽  
Yaning He

Sign in / Sign up

Export Citation Format

Share Document