dissipative particle dynamics
Recently Published Documents


TOTAL DOCUMENTS

1271
(FIVE YEARS 255)

H-INDEX

67
(FIVE YEARS 7)

2022 ◽  
Vol 203 ◽  
pp. 111104
Author(s):  
Katsumi Hagita ◽  
Takahiro Murashima ◽  
Hayato Shiba ◽  
Nobuyuki Iwaoka ◽  
Toshihiro Kawakatsu

SeMA Journal ◽  
2022 ◽  
Author(s):  
Adolfo Vázquez-Quesada ◽  
Marco Ellero

AbstractA stochastic Lagrangian model for simulating the dynamics and rheology of a Brownian multi-particle system interacting with a simple liquid medium is presented. The discrete particle model is formulated within the GENERIC framework for Non-Equilibrium Thermodynamics and therefore it satisfies discretely the First/Second Laws of Thermodynamics and the Fluctuation Dissipation Theorem (FDT). Long-range fluctuating hydrodynamics interactions between suspended particles are described by an explicit solvent model. To this purpose, the Smoothed Dissipative Particle Dynamics method is adopted, which is a GENERIC-compliant Lagrangian meshless discretization of the fluctuating Navier–Stokes equations. In dense multi-particle systems, the average inter-particle distance is typically small compared to the particle size and short-range hydrodynamics interactions play a major role. In order to bypass an explicit—computationally costly—solution for these forces, a lubrication correction is introduced based on semi-analytical expressions for spheres under Stokes flow conditions. We generalize here the lubrication formalism to Brownian conditions, where an additional thermal-lubrication contribution needs to be taken into account in a way that discretely satisfies FDT. The coupled lubrication dynamics is integrated in time using a generalized semi-implicit splitting scheme for stochastic differential equations. The model is finally validated for a single particle diffusion as well as for a Brownian multi-particle system under homogeneous shear flow. Results for the diffusional properties as well as the rheological behavior of the whole suspension are presented and discussed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7690
Author(s):  
Yingying Guo ◽  
Shuyan Yang

The spontaneous formation and fusion of raspberry vesicles was studied using the dissipative particle dynamics (DPD) method. The vesicles were formed through the self-assembly of amphiphilic E12O6F2 star terpolymers in selective solvent. E and F blocks are solvophobic and the O block is solvophilic. The shortest F block plays a major role in the formation of raspberry vesicles. Distinct vesicle formation mechanisms were observed at different polymer concentrations. At higher concentrations, vesicles form via the bending and closure of an oblate F-bump-E bilayer. At lower concentrations, the formation pathway contains: the initial formation of a vesicle with a core, the combination of such vesicles into cylindrical micelles, and the bending of the cylindrical micelles to form a hollow vesicle. In addition, raspberry vesicle fusion is regulated by F bumps through the continuous coalescence of them from apposed vesicle membranes. The contact area bends, followed by the formation of a fusion pore and a tilted inner layer. As the pore sealed, the hemifusion structure appears, which further restructures to form a vesicle. Our results provide guidance on understanding the dynamic processes of complex vesicles and biological membrane fusion.


Author(s):  
Nishanthi Rajkamal ◽  
Srikanth Vedantam

We present a dissipative particle dynamics (DPD) study of the deformation of capsules in microchannels. The strain in the membrane during this deformation causes the formation of temporary pores, which is termed mechanoporation. Mechanoporation is being considered as a means by which intracellular delivery of a broad range of cargo can be facilitated. In this work, we examine the strain distribution on the capsule membrane during transport of the capsule in converging-diverging microchannels of different constriction widths. The pore density is correlated to the strain in the membrane. We find that the highest strains and, consequently, the highest pore densities occur at intermediate channel widths. This occurs due to a competition of the bending of the membrane and fluid shear stresses in the flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mingcheng Gong ◽  
Zhenhua Chen ◽  
Liangliang Zhou ◽  
Feng Gao ◽  
Jianxin Cheng ◽  
...  

As a pH-sensitive nanomaterial, Eudragit S100 has good colon targeting. However, little research has been carried out on its mesoscopic scale. In this paper, the self-assembly behavior of Pulsatilla saponins D (PSD) and Eudragit S100, as well as the loading and release mechanism of PSD, was investigated via computer simulations. The effects of the self-assembly characteristics of PSD and Eudragit S100 in the dry powder state on the drug-carrier ratio were explored by the coarse-grained molecular dynamics (CGMD) method. According to the pH-responsive feature of Eudragit S100, the drug protection under gastric pH conditions and release in colonic pH conditions were simulated through the dissipative particle dynamics (DPD) method, which has provided insights into the microscopic morphological changes in the pH-sensitive drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document