Complementary Multiple Hydrogen Bonding Interactions Induce the Self-Assembly of Supramolecular Structures from Heteronucleobase-Functionalized Benzoxazine and Polyhedral Oligomeric Silsesquioxane Nanoparticles

2012 ◽  
Vol 45 (22) ◽  
pp. 9020-9028 ◽  
Author(s):  
Wei-Hsun Hu ◽  
Kai-Wei Huang ◽  
Chin-Wei Chiou ◽  
Shiao-Wei Kuo
2010 ◽  
Vol 82 (4) ◽  
pp. 917-929 ◽  
Author(s):  
Stefan Mohnani ◽  
Anna Llanes-Pallas ◽  
Davide Bonifazi

The controlled engineering of functional architectures composed of π-systems with unusual opto-electronic properties is currently being investigated intensively from both fundamental research and technological application viewpoints. In particular, the exploitation of the supramolecular approach for the facile construction of multidimensional architectures, featuring cavities capable of hosting functional molecules, could be used in several applications, such as nanomedicine, molecular-based memory storage devices, and sensors. This paper highlights our recent strategies to use hydrogen-bonding interactions to prepare nanostructured functional architectures via the self-assembly of organic molecular modules studied at different interfaces.


2018 ◽  
Vol 74 (8) ◽  
pp. 1151-1154
Author(s):  
Pushpendra Singh ◽  
Harkesh B. Singh ◽  
Ray J. Butcher

In the title compound, [HgCl2(C16H28N2Se)], the primary geometry around the Se and Hg atoms is distorted trigonal–pyramidal and distorted square-pyramidal, respectively. The distortion of the molecular geometry in the complex is caused by the steric demands of the ligands attached to the Se atom. The Hg atom is coordinated through two chloride anions, an N atom and an Se atom, making up an unusual HgNSeCl2 coordination sphere with an additional long Hg...N interaction. Intermolecular C—H...Cl interactions are the only identified intermolecular hydrogen-bonding interactions that seem to be responsible for the self assembly. These relatively weak C—H...Cl hydrogen bonds possess the required linearity and donor–acceptor distances. They act as molecular associative forces that result in a supramolecular assembly along the b-axis direction in the solid state of the title compound.


CrystEngComm ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 710-723 ◽  
Author(s):  
Ellen Heeley ◽  
Youssef El Aziz ◽  
Christopher Ellingford ◽  
Albina Jetybayeva ◽  
Chaoying Wan ◽  
...  

The self-assembly and crystal packing of a unique series of nanocrystalline fluoride ion-encapsulated polyhedral oligomeric silsesquioxane (F-POSS) compounds, with substituted electron-withdrawing group (EWG) perfluorinated alkyl chain arms of varying lengths, were investigated.


Sign in / Sign up

Export Citation Format

Share Document