Controlling the pore sizes of graphene oxide nanostructures through hydrothermal reactions for efficient water purification

Author(s):  
Michael Appiak-Kubi ◽  
Wei Zhao
2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


2017 ◽  
Vol 174 ◽  
pp. 392-399 ◽  
Author(s):  
Shunli Liu ◽  
Fang Yao ◽  
Olayinka Oderinde ◽  
Zhihong Zhang ◽  
Guodong Fu

2021 ◽  
Vol 10 (2) ◽  
pp. 51-60
Author(s):  
Katarina Stepić ◽  
Radomir Ljupković ◽  
Jovana Ickovski ◽  
Aleksandra Zarubica

New and effective methods of water purification are necessary to minimize pollution. Many methods have been used in wastewater treatment, but sorption is considered as an easy and economic process. The efficiency of any sorption process mainly depends on the physicochemical properties of the used adsorbent. Since photocatalysts can initiate reactions of decomposition organic contaminants under ultraviolet or sunlight irradiation without using chemicals or producing chemical wastes, photocatalytic reactions are considered a sustainable way to remove a variety of environmental pollutants. Ultraviolet water purification became the most effective method of water disinfection and purification. Heterogeneous semiconductor photocatalysts have recently emerged as an efficient material for purifying water. The crystal structure is crucial for photocatalytic activity and efficiency of semiconductors, thus optimal parameters must be provided during the preparation of photocatalysts. To overcome problems with semiconductors usage, the use of co-catalysts and photocatalyst carriers is one of the solutions. Recently, much emphasis has been placed on using graphene oxide (GO) supported semiconductor photocatalysts. In this paper, a short review of composites of titanium dioxide and graphene oxide-based materials is given.


Sign in / Sign up

Export Citation Format

Share Document