sorption process
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 246)

H-INDEX

23
(FIVE YEARS 8)

ACS Omega ◽  
2022 ◽  
Author(s):  
Olga V. Cheremisina ◽  
Maria A. Ponomareva ◽  
Victor A. Bolotov ◽  
Artyom S. Osipov ◽  
Alexandr V. Sitko

Author(s):  
D.S. Kaumetova ◽  
◽  
A.K. Koizhanova ◽  
Kh.K. Absalyamov ◽  
D.R. Magomedov ◽  
...  

The paper presents the results of studies on the sorption leaching of gold-containing ore of the Vasilkovskoye deposit. Kinetic dependences of the sorption of gold and associated metals from cyanide-alkali solutions under different physical and chemical factors were obtained. It was found that gold on the AM-2B resin sorbed at a higher rate than, for example, copper and zinc. The solutions were analyzed using modern devices of a new generation: FT-IR spectrometer "Avatar 370". Laboratory studies were performed to determine the gold sorption rate by the AM-2B anionite from cyanide-alkaline solutions. It was found in the process of sorption of gold from multicomponent cyanide-alkali solutions on AM-2B anionite of mixed basicity, with the macroporous structure containing benzyl dimethylamine and dibenzyl dimethyl ammonium functional groups, that an important factor of qualitative and quantitative separation of gold and impurity metals is the concentration of cyanide and hydroxyl ions in solution. The temperature effect on the sorption rate of gold from cyanide-alkali solutions was studied with the temperature dependences F of t, Bt, of t, ln (l - F) of t, and D of t that show that the sorption process of dicyanoaurate ions is controlled by mixed diffusion.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Suxing Luo ◽  
Jun Qin ◽  
Yuanhui Wu ◽  
Feng Feng

Activated sludge, which is difficult and expensive to treat and dispose of, is a key concern in wastewater treatment plants. In this study, magnetic sludge biochar containing activated sludge and different sizes (14.3, 40.2 and 90.5 nm) of Fe 3 O 4 nanoparticles was investigated as an effective adsorbent for tetracycline (TC) adsorption. Magnetic sludge-based biochar was prepared by a facile cross-linking method and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and zeta potential analysis. The adsorption performances of TC on three kinds of adsorbents were investigated. Although 14.3 nm Fe 3 O 4 nanoparticles could be inclined to aggregate and partially filled with pores of biochar, it turned out that magnetic sludge biochar with 14.3 nm Fe 3 O 4 nanoparticles exhibited optimum performance for TC removal with adsorption capacity up to 184.5 mg g −1 , due to the larger amounts of functional groups and the change of zeta potential. Furthermore, the adsorption kinetics of TC on three kinds of adsorbents were studied, which implied that the pseudo-second-order kinetic model exhibited the better fit for the entire sorption process.


Author(s):  
Özgür Arar

Beryllium (Be2+) is an important industrial metal because of its unusual material properties: it is lighter than aluminium and six times stronger than steel. Beryllium is a strategic metal due to its low density combined with its strength, low neutron absorption, high melting point and high modulus of elasticity. Beryllium is often alloyed with other metals such as copper and is an important component of materials used in the aerospace, automotive, energy, defense, medical, and electronics industries. However, beryllium and its compounds are very toxic, especially to the lungs, skin, and eyes. Beryllium compounds are known carcinogens based on sufficient evidence of carcinogenicity in humans from human studies. Toxic effects of beryllium include immunotoxic, allergic, mutagenic, and carcinogenic effects. Mammalian tissues do not excrete it, so the effects are cumulative and can lead to death at high concentrations. Therefore, removal of Be2+ is important. In this review, the removal of Be2+ from water samples by sorption processes using different sorbents was summarized. The effects of process parameters on the removal of Be2+ have been summarized. The work discussed showed that ion exchange resins, various modified biosorbents metal oxides can be used for the removal of Be2+. The results showed that the pH of the solution has an important effect on the removal rate. Sorption kinetics vary from 3 minutes to 48h. When the functional groups are on the surface of the sorbent, the sorption process is rapid. However, if the surface of the sorbent is covered with oxides such as magnetite, it takes longer to reach equilibrium. Published work shows that more than 99 % of Be2+ can be removed from solution.


Author(s):  
А.А. Agatayeva ◽  
◽  
U.Zh. Jussipbekov ◽  
R.М. Chernyakova ◽  
R.А. Kaiynbayeva ◽  
...  

The processing of phosphorites into elemental phosphorus is accom-panied by the formation of waste - cotrile "milk", in which indium, gallium, and silver are present. This waste can be considered as a cheap raw material for the production of rare and precious metals. In the scientific literature there are data on the sorption capacity of hexacyano-ferrates of iron, which has a crystal lattice with a channel diameter from 3.0 to 3.5Å. Investigation of the sorption process in the model system "Fe4[Fe(CN)6]3·10H2O - Ag+- In3+- Ga3+ - H2O" depending on the norm of iron hexacyanoferrate (sorbent). The initial concentration of silver, indium and gallium ions and their residual content in solutions were determined using the atomic absorption spectrophotometer "PerkinElmer Analyst 400" (USA). The microstructure of the initial iron hexacyanoferrate and iron hexacyano-ferrate, after sorption, was studied on the CarlZeissFESEM and JEOL brand "JXA-8230" (Japan). With a ratio to T:W equal to 1.75-2.5:100, the degree of sorption of Ag+ with iron hexacyanoferrate is 99.5 and 99.8 %. The highest degree of sorption (96.75%) of In3+ ions can be obtained with a sorbent weighing 3 g per 100 g of solution at 60oC. A high degree of sorption of Ga3+ cations is achieved at low (0.5:100 wt. h.) and high (3:100 wt. h.) consumption of iron hexacyanoferrate. It was revealed that iron hexacyanoferrate exhibits sorption properties simultaneously with respect to mono- and trivalent metals, and the basic laws of their sorption were established.


2021 ◽  
pp. 26-41
Author(s):  
T.K. Jumadilov ◽  
◽  
Kh. Khimersen ◽  
R.G. Kondaurov ◽  
A.M. Imangazy ◽  
...  

The aim of this research work is comparative study of influence of ionic radii of heavy metal ions of neodymium and scandium on their sorption process from corresponding water solutions of sulfates by sorbents such as individual ion-exchangers Amberlite IR120, AB-17-8 and mixture of these sorbents related to interpolymer system Amberlite IR120-AB-17-8 at the various molar relations. Laboratory experiments of this work of sorption heavy ions of neodymium and scandium were carried out and inves-tigated by using the following physico-chemical methods of analysis: conductometry-based on the electrical conductor, pH-metry-based on the concentration of hydrogen ions, colorimetry, atomic-emission spectro-scopy. Ion-exchangers in the interpolymer system undergo remote interaction with further transition into highly ionized state. There is formation of optimal conformation in structure of the initial ion- exchangers. Significant increase of ionization of the ion-exchange resins occurs at molar ratio Amberlite IR120:AB-17-8 = 5:1. Significant increase of sorption properties is observed at this ratio due to mutual activation of ion-exchangers. The extraction rate of Nd3+ ions in 48 hours is 42.32%, and the extraction rate of Sc3+ ions is 38.06%. A possible reason for higher sorption of neodymium ions in comparison with scandium ions is maximum conformity of globes of internode links of Amberlite IR120 and AB-17-8 after activation to sizes of neodymium sulfate in an aqueous medium.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 42-47
Author(s):  
Yu. O. Velyaev ◽  
◽  
D. V. Maiorov ◽  

The process of sorption of phosphate ion by silicon dioxide obtained by acid decomposition of nepheline is studied. The experimental data were processed using the Freundlich and Langmuir sorption equations, which showed that the sorption process is fairly accurately described by both equations, while the use of the Langmuir monomolecular adsorption equation is preferable in the calculations. The capacity of the adsorption monolayer of the synthesized sample relative to the РО43–-ion and the adsorption equilibrium constant are calculated. Based on the obtained data, various options for sorption treatment of municipal wastewater from РО43--ion to normalized MPC values were evaluated.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 253-260
Author(s):  
O. A. Timoshchik ◽  
◽  
E. A. Shchelokova ◽  
A. G. Kasikov ◽  
M. V. Bryukhanova ◽  
...  

The sorption of vanadium (V) and nickel (II) from aqueous solutions on amorphous silica obtained from metallurgical slags of the Kola MMC is considered, and the optimal conditions for the metal sorption process are determined. It is established that the maximum sorption of metals is achieved at pH 2.0–4.0, at a temperature of 40 °C and a process time of 60 minutes for nickel and 90 minutes for vanadium.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7482
Author(s):  
Paweł Staroń ◽  
Jarosław Chwastowski

This study investigated the possibility of obtaining a raphia-microorganism composite for removing lead ions from aqueous solutions using immobilized yeast cells Saccharomyces cerevisiae on Raphia farinifera fibers. The obtained biocomposite was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Studies were conducted to determine the influence of contact time, initial concentration of Pb(II), and pH allowed for the selection of nonlinear equilibrium and kinetic models. The results showed that the biocomposite had a better Pb(II) removal capacity in comparison to the raphia fibers alone, and its maximum Pb(II) adsorption capacity was 94.8 mg/g. The model that best describes Pb(II) sorption was the Temkin isotherm model, while kinetic studies confirmed the chemical nature of the sorption process following the Elovich model. The obtained research results provide new information on the full use of the adsorption function of biomass and the ubiquitous microbial resources and their use in the remediation of aqueous environments contaminated with heavy metals.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rachida Ouaabou ◽  
Said Ennahli ◽  
Chira Di Lorenzo ◽  
Hafida Hanine ◽  
Aadil Bajoub ◽  
...  

Understanding sorption isotherms is crucial in food science for optimizing the drying processes, enhancing the shelf-life of food, and maintaining food quality during storage. This study investigated the isotherms of sweet cherry powder (SCP) using the static gravimetric method. The experimental water sorption curves of lyophilized sweet cherry powder were determined at 30°C, 40°C, and 50°C. The curves were then fitted to six isotherm models: Modified GAB, Halsey, Smith, Oswin, Caurie, and Kühn models. To define the energy associated with the sorption process, the isosteric sorption heat, differential entropy, and spreading pressure were derived from the isotherms. Among the six models, the Smith model is the most reliable in predicting the sorption of the cherry powder with a determination coefficient (R2) of 0.9978 and a mean relative error (MRE) ≤1.61. The values of the net isosteric heat and differential entropy for the cherry increased exponentially as the moisture content decreased. The net isosteric heat values varied from 10.63 to 90.97 kJ mol−1, while the differential entropy values varied from 27.94 to 273.39 J. mol−1K−1. Overall, the enthalpy-entropy compensation theory showed that enthalpy-controlled mechanisms could be used to regulate water adsorption in cherry powders.


Sign in / Sign up

Export Citation Format

Share Document