polluted water
Recently Published Documents


TOTAL DOCUMENTS

1641
(FIVE YEARS 674)

H-INDEX

46
(FIVE YEARS 16)

2022 ◽  
Vol 217 ◽  
pp. 106387
Author(s):  
Lei Wang ◽  
Haris Muhammad ◽  
Minwang Laipan ◽  
Xiaohu Fan ◽  
Junkang Guo ◽  
...  
Keyword(s):  

Author(s):  
Syed Rashedul Islam ◽  
Md. Mehedi Hasan ◽  
Xiaolin Shen ◽  
Tayyab Naveed ◽  
Mohammed Kayes Patoary ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 100
Author(s):  
Xuemei Ji ◽  
Cui Zhao ◽  
Yufeng Lv ◽  
Jifu Yang ◽  
Bin Li

Slow sand filters (SSFs) have been widely used in the construction of water plants in rural areas. It is necessary to find river sand of suitable particle size to improve SSF treatment of micro-polluted water so as to ensure the effective and long-term operation of these plants. In this study, SSF1# (particle size of 0.1–0.5 mm), SSF2# (particle size of 0.5–1 mm), and SSF3# (particle size of 1–1.5 mm) were selected. The physical absorption, CODMn and NH4+-N removal effect, and microbial community were analyzed. According to Langmuir and Freundlich adsorption model fitting, the smaller the particle size of the river sand, the more pollutants are adsorbed under the same conditions. SSF1# has the shortest membrane-forming time, highest CODMn and NH4+-N removal rate, and highest Shannon estimator, indicating that there are more abundant microbial species in the biofilm. Mesorhizobium, Pannonibacter, Pseudoxanthomonas, Aquabacterium, Devosia, and other bacteria have different proportions in each system, each forming its own stable biological chain system. The effluent quality of the three SSFs can meet drinking water standards. However, river sand with a particle size range of 0.1–0.5 mm is easily blocked, and thus the recommended size range for SSF is 0.5–1 mm.


2022 ◽  
Vol 11 (1) ◽  
pp. e6811121720
Author(s):  
Hellen Luisa de Castro e Silva ◽  
Regina Mambeli Barros ◽  
Ivan Felipe Silva dos Santos ◽  
Electo Eduardo Silva Lora ◽  
Marco Aurélio Kondracki de Alcântara ◽  
...  

The agro-industrial systems comprise activities which transform raw materials of agricultural, aquacultural, livestock and forestry industries from primary production stages to consumption. Pig farming stands out in national and international markets for agro-industrial processes such as slaughtering and meat processing. Although this sector positively contributes to the economies of several countries, the high flow of waste resulting from implementing integrated production systems has led to serious environmental consequences (e.g.,  polluted water bodies and Greenhouse Gases - GHGs emissions). Among the treatment methods, anaerobic digestion reduces the organic load of biomass in the absence of oxygen, generating biogas and organic fertilizer. However, there are limitations associated with high CH4 variability and low yield, resulting a minimal and slow implementation in Brazil. Some research has reported the use of mineral additives to optimize the digestion process. This study comprises a bibliographic review of pig farming systems and production models, followed by an analysis on a global scale and environmental consequences. It is also discussed the use of additive minerals which have been applied in anaerobic digestion of swine manure as well as some prospects for global advances with opportunities to mitigate GHGs and bottlenecks. Despite being a promising technology, detailed evaluations of the use of these additives and their implementation in treatment plants must still be carried out in such a way to understand the optimization of such process.


2022 ◽  
Vol 962 (1) ◽  
pp. 012050
Author(s):  
N F Fetisova

Abstract Acid mine drainage (AMD) of the abandoned coal mines of the Kizelovsky coal basin (the Urals, Russia) is one of the worst natural disasters in the region. Acidic sulphate waters with a high content of metals freely flow into the surface water bodies. Arsenic, found in elevated concentrations in AMD, is an element of concern due to its potential toxicity to humans and animals. The aim of this work is determination of chemical speciation of inorganic arsenic in AMD as well as the surface water and groundwater affected by mine drainage, and assessment the natural removal of As from mine drainage due to adsorption on precipitated hydrous ferric oxide (HFO). Geochemical speciation (PHREEQC) revealed that arsenic occurs in all water samples as As(V). Surface complexation model shows that, HFO induced by the natural attenuation process may remove 46–85% of total arsenic in AMD and only 28% in polluted groundwater (on average).


Sign in / Sign up

Export Citation Format

Share Document