Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting

2004 ◽  
Vol 12 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Ying Tian ◽  
Wenhui Nie ◽  
Jinhuan Wang ◽  
Malcolm A. Ferguson-Smith ◽  
Fengtang Yang
Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 525-530 ◽  
Author(s):  
RJ Waugh O'Neill ◽  
MDB Eldridge ◽  
R Toder ◽  
MA Ferguson-Smith ◽  
P C O'Brien ◽  
...  

Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.


2005 ◽  
Vol 13 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Ling Huang ◽  
Wenhui Nie ◽  
Jinhuan Wang ◽  
Weiting Su ◽  
Fengtang Yang

1998 ◽  
Vol 83 (3-4) ◽  
pp. 182-192 ◽  
Author(s):  
W.G. Nash ◽  
J. Wienberg ◽  
M.A. Ferguson-Smith ◽  
J.C. Menninger ◽  
S.J. O’Brien

Heredity ◽  
2020 ◽  
Author(s):  
Cíntia P. Targueta ◽  
Vladimir Krylov ◽  
Tobias E. Nondilo ◽  
Jucivaldo Lima ◽  
Luciana B. Lourenço

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Willam Oliveira da Silva ◽  
Julio Cesar Pieczarka ◽  
Marlyson Jeremias Rodrigues da Costa ◽  
Malcolm Andrew Ferguson-Smith ◽  
Patricia Caroline Mary O’Brien ◽  
...  

Abstract Background The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. Results The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. Conclusions Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.


2018 ◽  
Vol 5 (8) ◽  
pp. 171539 ◽  
Author(s):  
Fumio Kasai ◽  
Patricia C. M. O'Brien ◽  
Jorge C. Pereira ◽  
Malcolm A. Ferguson-Smith

Extensive chromosome homologies revealed by cross-species chromosome painting between marsupials have suggested a high level of genome conservation during evolution. Surprisingly, it has been reported that marsupial genome sizes vary by more than 1.2 Gb between species. We have shown previously that individual chromosome sizes and GC content can be measured in flow karyotypes, and have applied this method to compare four marsupial species. Chromosome sizes and GC content were calculated for the grey short-tailed opossum (2 n = 18), tammar wallaby (2 n = 16), Tasmanian devil (2 n = 14) and fat-tailed dunnart (2 n = 14), resulting in genome sizes of 3.41, 3.31, 3.17 and 3.25 Gb, respectively. The findings under the same conditions allow a comparison between the four species, indicating that the genomes of these four species are 1–8% larger than human. We show that marsupial genomes are characterized by a low GC content invariable between autosomes and distinct from the higher GC content of the marsupial × chromosome.


Sign in / Sign up

Export Citation Format

Share Document