scholarly journals Chromosomal phylogeny and comparative chromosome painting among Neacomys species (Rodentia, Sigmodontinae) from eastern Amazonia

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Willam Oliveira da Silva ◽  
Julio Cesar Pieczarka ◽  
Marlyson Jeremias Rodrigues da Costa ◽  
Malcolm Andrew Ferguson-Smith ◽  
Patricia Caroline Mary O’Brien ◽  
...  

Abstract Background The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. Results The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. Conclusions Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.

2020 ◽  
Vol 21 (7) ◽  
pp. 2415 ◽  
Author(s):  
Willam Oliveira da Silva ◽  
Stella Miranda Malcher ◽  
Adenilson Leão Pereira ◽  
Julio Cesar Pieczarka ◽  
Malcolm Andrew Ferguson-Smith ◽  
...  

Comparative chromosome-painting analysis among highly rearranged karyotypes of Sigmodontinae rodents (Rodentia, Cricetidae) detects conserved syntenic blocks, which are proposed as chromosomal signatures and can be used as phylogenetic markers. In the Akodontini tribe, the molecular topology (Cytb and/or IRBP) shows five low-supported clades (divisions: “Akodon”, “Bibimys”, “Blarinomys”, “Oxymycterus”, and “Scapteromys”) within two high-supported major clades (clade A: “Akodon”, “Bibimys”, and “Oxymycterus”; clade B: “Blarinomys” and “Scapteromys”). Here, we examine the chromosomal signatures of the Akodontini tribe by using Hylaeamys megacephalus (HME) probes to study the karyotypes of Oxymycterus amazonicus (2n = 54, FN = 64) and Blarinomys breviceps (2n = 28, FN = 50), and compare these data with those from other taxa investigated using the same set of probes. We strategically employ the chromosomal signatures to elucidate phylogenetic relationships among the Akodontini. When we follow the evolution of chromosomal signature states, we find that the cytogenetic data corroborate the current molecular relationships in clade A nodes. We discuss the distinct events that caused karyotypic variability in the Oxymycterus and Blarinomys genera. In addition, we propose that Blarinomys may constitute a species complex, and that the taxonomy should be revised to better delimit the geographical boundaries and their taxonomic status.


2011 ◽  
Vol 19 (7) ◽  
pp. 843-855 ◽  
Author(s):  
Vladimir A. Trifonov ◽  
Massimo Giovannotti ◽  
Patricia C. M. O’Brien ◽  
Margaret Wallduck ◽  
Frances Lovell ◽  
...  

2008 ◽  
Vol 122 (2) ◽  
pp. 157-162 ◽  
Author(s):  
E.H.C. de Oliveira ◽  
S.P. de Moura ◽  
L.J.S. dos Anjos ◽  
C.Y. Nagamachi ◽  
J.C. Pieczarka ◽  
...  

2007 ◽  
Vol 15 (4) ◽  
pp. 447-456 ◽  
Author(s):  
Natalia A. Sitnikova ◽  
Svetlana A. Romanenko ◽  
Patricia C. M. O’Brien ◽  
Polina L. Perelman ◽  
Beiyuan Fu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


1994 ◽  
Vol 6 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Harry Scherthan ◽  
Thomas Cremer ◽  
Ulfur Arnason ◽  
Heinz-Ulrich Weier ◽  
Antonio Lima-de-Faria ◽  
...  

Author(s):  
R. H. Sammour ◽  
M. A. Karam ◽  
Y. S. Morsi ◽  
R. M. Ali

Abstract The present study aimed to assess population structure and phylogenetic relationships of nine subspecies of Brassica rapa L. represented with thirty-five accessions cover a wide range of species distribution area using isozyme analysis in order to select more diverse accessions as supplementary resources that can be utilized for improvement of B. napus. Enzyme analysis resulted in detecting 14 putative polymorphic loci with 27 alleles. Mean allele frequency 0.04 (rare alleles) was observed in Cat4A and Cat4B in sub species Oleifera accession CR 2204/79 and in subspecies trilocularis accessions CR 2215/88 and CR 2244/88. The highest genetic diversity measures were observed in subspecies dichotoma, accession CR 1585/96 (the highest average of observed (H0) and expected heterozygosity (He), and number of alleles per locus (Ae)). These observations make this accession valuable genetic resource to be included in breeding programs for the improvement of oilseed B. napus. The average fixation index (F) is significantly higher than zero for the analysis accessions indicating a significant deficiency of heteozygosity. The divergence among subspecies indicated very great genetic differentiation (FST = 0.8972) which means that about 90% of genetic diversity is distributed among subspecies, while 10% of the diversity is distributed within subspecies. This coincides with low value of gene flow (Nm = 0.0287). B. rapa ssp. oleifera (turnip rape) and B. rapa ssp. trilocularis (sarson) were grouped under one cluster which coincides with the morphological classification.


2005 ◽  
Vol 65 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Aurora Ruiz-Herrera ◽  
Francisca García ◽  
Marisol Aguilera ◽  
Montserrat Garcia ◽  
Montserrat Ponsà Fontanals

Sign in / Sign up

Export Citation Format

Share Document