phylogenomic study
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 46 (4) ◽  
pp. 891-915
Author(s):  
Susan Fawcett ◽  
Alan R. Smith ◽  
Michael Sundue ◽  
J. Gordon Burleigh ◽  
Emily B. Sessa ◽  
...  

Abstract— The generic classification of the Thelypteridaceae has been the subject of much controversy. Proposed taxonomic systems have varied from recognizing the approximately 1200 species in the family within the single genus Thelypteris, to systems favoring upwards of 30 genera. Insights on intrafamilial relationships, especially for neotropical taxa, have been gained from recent phylogenetic studies; however, in the most recent classification, 10 of 30 recognized genera are either non-monophyletic or untested. We sequenced 407 nuclear loci for 621 samples, representing all recognized genera and approximately half the known species diversity. These were analyzed using both maximum likelihood analysis of a concatenated matrix and multi-species coalescent methods. Our phylogenomic results, informed by recently published morphological evidence, provide the foundation for a generic classification which recircumscribed 14 genera and recognized seven new genera. The 37 monophyletic genera sampled demonstrate greater geographic coherence than previous taxonomic concepts suggested. Additionally, our results demonstrate that certain morphological characters, such as frond division, are evolutionarily labile and are thus inadequate for defining genera.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ayda Mirsalehi ◽  
Dragomira N. Markova ◽  
Mohammadmehdi Eslamieh ◽  
Esther Betrán

Abstract Background The nuclear transport machinery is involved in a well-known male meiotic drive system in Drosophila. Fast gene evolution and gene duplications have been major underlying mechanisms in the evolution of meiotic drive systems, and this might include some nuclear transport genes in Drosophila. So, using a comprehensive, detailed phylogenomic study, we examined 51 insect genomes for the duplication of the same nuclear transport genes. Results We find that most of the nuclear transport duplications in Drosophila are of a few classes of nuclear transport genes, RNA mediated and fast evolving. We also retrieve many pseudogenes for the Ran gene. Some of the duplicates are relatively young and likely contributing to the turnover expected for genes under strong but changing selective pressures. These duplications are potentially revealing what features of nuclear transport are under selection. Unlike in flies, we find only a few duplications when we study the Drosophila duplicated nuclear transport genes in dipteran species outside of Drosophila, and none in other insects. Conclusions These findings strengthen the hypothesis that nuclear transport gene duplicates in Drosophila evolve either as drivers or suppressors of meiotic drive systems or as other male-specific adaptations circumscribed to flies and involving a handful of nuclear transport functions.


Zootaxa ◽  
2021 ◽  
Vol 5071 (1) ◽  
pp. 118-130
Author(s):  
HOJUN SONG ◽  
GISELLE R. MUSCHETT ◽  
DEREK A. WOLLER ◽  
RACHEL A. SLATYER ◽  
NIKOLAI J. TATARNIC ◽  
...  

The Australian skyhopper genus Kosciuscola Sjöstedt consists of brachypterous species that inhabit the Australian alpine and subalpine region. The genus used to include 5 species and 1 subspecies, but according to a recent phylogenomic study, there could be as many as 14 species in the genus, that are genetically and geographically isolated from each other. This study represents the first step in describing and documenting the diversity of this interesting genus. In this study, we redefine the type species K. tristis, and elevate its subspecies K. tristis restrictus as a valid species on the basis of distinct morphological traits, geographical isolation, and phylogenomic evidence.  


2021 ◽  
Author(s):  
Olivier Maurin ◽  
Artemis Anest ◽  
Sidonie Bellot ◽  
Edward Biffin ◽  
Grace Brewer ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
James J. Clarkson ◽  
Alexandre R. Zuntini ◽  
Olivier Maurin ◽  
Stephen R. Downie ◽  
Gregory M. Plunkett ◽  
...  
Keyword(s):  

Author(s):  
Alexandre R. Zuntini ◽  
Lorna P. Frankel ◽  
Lisa Pokorny ◽  
Félix Forest ◽  
William J. Baker

2021 ◽  
Author(s):  
Aintzane Santaquiteria ◽  
Alexandre C Siqueira ◽  
Emanuell Duarte-Ribeiro ◽  
Giorgio Carnevale ◽  
William White ◽  
...  

Abstract The charismatic trumpetfishes, goatfishes, dragonets, flying gurnards, seahorses, and pipefishes encompass a recently defined yet extraordinarily diverse clade of percomorph fishes—the series Syngnatharia. This group is widely distributed in tropical and warm-temperate regions, with a great proportion of its extant diversity occurring in the Indo-Pacific. Because most syngnatharians feature long-range dispersal capabilities, tracing their biogeographic origins is challenging. Here, we applied an integrative phylogenomic approach to elucidate the evolutionary biogeography of syngnatharians. We built upon a recently published phylogenomic study that examined ultraconserved elements by adding 62 species (total 169 species) and one family (Draconettidae), to cover ca. 25% of the species diversity and all 10 families in the group. We inferred a set of time-calibrated trees and conducted ancestral range estimations. We also examined the sensitivity of these analyses to phylogenetic uncertainty (estimated from multiple genomic subsets), area delimitation, and biogeographic models that include or exclude the jump-dispersal parameter (j). Of the three factors examined, we found that the j parameter has the strongest effect in ancestral range estimates, followed by number of areas defined, and tree topology and divergence times. After accounting for these uncertainties, our results reveal that syngnatharians originated in the ancient Tethys Sea ca. 87 Ma (84–94 Ma; Late Cretaceous) and subsequently occupied the Indo-Pacific. Throughout syngnatharian history, multiple independent lineages colonized the eastern Pacific (6–8 times) and the Atlantic (6–14 times) from their center of origin, with most events taking place following an east-to-west route prior to the closure of the Tethys Seaway ca. 12–18 Ma. Ultimately, our study highlights the importance of accounting for different factors generating uncertainty in macroevolutionary and biogeographic inferences.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mick Van Vlierberghe ◽  
Hervé Philippe ◽  
Denis Baurain

Abstract Objectives Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary. Data description We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.


Mitochondrion ◽  
2020 ◽  
Author(s):  
Hueman Jaimes Díaz ◽  
Elvira I. MartínezCovarrubias ◽  
Jazmin E. Murcia Garzón ◽  
Mauricio Flores-Valdez ◽  
Zilia Y. Muñoz-Ramírez ◽  
...  

Author(s):  
Felipe V Freitas ◽  
Michael G Branstetter ◽  
Terry Griswold ◽  
Eduardo A B Almeida

Abstract Incongruence among phylogenetic results has become a common occurrence in analyses of genome-scale data sets. Incongruence originates from uncertainty in underlying evolutionary processes (e.g., incomplete lineage sorting) and from difficulties in determining the best analytical approaches for each situation. To overcome these difficulties, more studies are needed that identify incongruences and demonstrate practical ways to confidently resolve them. Here, we present results of a phylogenomic study based on the analysis 197 taxa and 2,526 ultraconserved element (UCE) loci. We investigate evolutionary relationships of Eucerinae, a diverse subfamily of apid bees (relatives of honey bees and bumble bees) with >1,200 species. We sampled representatives of all tribes within the group and >80% of genera, including two mysterious South American genera, Chilimalopsis and Teratognatha. Initial analysis of the UCE data revealed two conflicting hypotheses for relationships among tribes. To resolve the incongruence, we tested concatenation and species tree approaches and used a variety of additional strategies including locus filtering, partitioned gene-trees searches, and gene-based topological tests. We show that within-locus partitioning improves gene tree and subsequent species-tree estimation, and that this approach, confidently resolves the incongruence observed in our data set. After exploring our proposed analytical strategy on eucerine bees, we validated its efficacy to resolve hard phylogenetic problems by implementing it on a published UCE data set of Adephaga (Insecta: Coleoptera). Our results provide a robust phylogenetic hypothesis for Eucerinae and demonstrate a practical strategy for resolving incongruence in other phylogenomic data sets.


Sign in / Sign up

Export Citation Format

Share Document