karyotype evolution
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 79)

H-INDEX

35
(FIVE YEARS 5)

Caryologia ◽  
2021 ◽  
Author(s):  
Cynthia Aparecida Valiati Barreto ◽  
Marco Antônio Peixoto ◽  
Késsia Leite de Souza ◽  
Natália Travenzoli ◽  
Renato Neves Feio ◽  
...  

The genus Enyalius is composed of 10 described species inhabiting forest areas in Amozônia, Cerrado and Atlantic forest biomes. Currently, eight species with high levels of chromosome variation have been karyotyped. The study aims to characterize the karyotype of Enyalius boulengeri, with classical and molecular techniques, and improve knowledge about the karyotype evolution of the lizard genus Enyalius. The species has 2n = 36 chromosomes (8m + 4sm + 24mc), FN = 24; NORs and 18S rDNA were subtelomeric and located on chromosome pair 2. Repetitive DNA probes (CAT)10 accumulated on centromeric and terminal regions of some macrochromosomes. (GA)15 probe showed conspicuous accumulation on the pericentromeric region of chromosome pairs 1 and 6. Repetitive FISH patterns obtained with (GC)15 probe marked the pericentromeric region of the first chromosome pair. All probes showed accumulation in the microchromosomes. The chromosomal formula found on E. boulengeri has been considered the ancestral karyotype for pleurodont Iguania. The genus Enyalius is characterized by two distinctive chromosomal groups; one with highly conserved karyotypes, whereas the other is karyotypically diverse. Our molecular cytogenetics data are promising and will increase knowledge about the genus Enyalius chromosome evolution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259905
Author(s):  
Carlos A. Carvalho ◽  
Ivanete O. Furo ◽  
Patricia C. M. O’Brien ◽  
Jorge Pereira ◽  
Rebeca E. O’Connor ◽  
...  

Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3233
Author(s):  
Azucena Claudia Reyes Lerma ◽  
František Šťáhlavský ◽  
Michael Seiter ◽  
Leonela Zusel Carabajal Paladino ◽  
Klára Divišová ◽  
...  

Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42–76 and 22–74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.


2021 ◽  
Author(s):  
Cristina A. Matzenbacher ◽  
Juliana Silva ◽  
Ana Leticia H. Garcia ◽  
Rafael Kretschmer ◽  
Mónica Cappetta ◽  
...  

Abstract The genus Ctenomys has been widely used in karyotype evolution studies due to the variation in their diploid numbers (2n), which range from 2n = 10 to 2n = 70. Ctenomys minutus is characterized by intraspecific variation in diploid number (2n = 42, 46, 48, and 50), which makes it an interesting model to investigate the genomic instability mechanisms that have led to different cytotypes in this species. We aimed to contribute to the knowledge about telomeres’ role in chromosomal instability and global DNA methylation in the genome evolution of C. minutus. This study found that telomere length differs between cytotypes, but only for females (50a<46a,48a,42), although methylation was also higher, no significant difference was shown. It was also shown that young individuals, regardless of cytotype, had the longest telomere and the most methylated DNA, although only the last was statistically significant. Despite this, there is still much to be answered, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin Santos da Silva ◽  
Augusto Cesar Paes de Souza ◽  
Ananda Marques Pety ◽  
Renata Coelho Rodrigues Noronha ◽  
Marcelo Ricardo Vicari ◽  
...  

Peckoltia is widely distributed genus in the Amazon and Orinoco basins and the Guiana Shield, containing 18 valid species, and distinct morphotypes still needing description in the scientific literature due to its great taxonomic complexity. This study performed a comparative chromosomal analysis of two undescribed Peckoltia species (Peckoltia sp. 3 Jarumã and Peckoltia sp. 4 Caripetuba) from the Brazilian Amazon using conventional chromosome bands methods and in situ localization of the repetitive DNA (5S and 18S rRNA and U1 snRNA genes and telomeric sequences). Both species presented 2n = 52 but differed in their karyotype formula, probably due to inversions or translocations. The nucleolus organizer regions (NORs) showed distal location on a probably homeologous submetacentric pair in both species, besides an extra signal in a subtelocentric chromosome in Peckoltia sp. 4 Caripetuba. Heterochromatin occurred in large blocks, with different distributions in the species. The mapping of the 18S and 5S rDNA, and U1 snDNA showed differences in locations and number of sites. No interstitial telomeric sites were detected using the (TTAGGG)n probes. Despite 2n conservationism in Peckoltia species, the results showed variation in karyotype formulas, chromosomal bands, and locations of repetitive sites, demonstrating great chromosomal diversity. A proposal for Peckoltia karyotype evolution was inferred in this study based on the diversity of location and number of chromosomal markers analyzed. A comparative analysis with other Peckoltia karyotypes described in the literature, their biogeography patterns, and molecular phylogeny led to the hypothesis that the derived karyotype was raised in the left bank of the Amazon River.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1436
Author(s):  
Magdalena Senderowicz ◽  
Teresa Nowak ◽  
Magdalena Rojek-Jelonek ◽  
Maciej Bisaga ◽  
Laszlo Papp ◽  
...  

The evolution of the karyotype and genome size was examined in species of Crepis sensu lato. The phylogenetic relationships, inferred from the plastid and nrITS DNA sequences, were used as a framework to infer the patterns of karyotype evolution. Five different base chromosome numbers (x = 3, 4, 5, 6, and 11) were observed. A phylogenetic analysis of the evolution of the chromosome numbers allowed the inference of x = 6 as the ancestral state and the descending dysploidy as the major direction of the chromosome base number evolution. The derived base chromosome numbers (x = 5, 4, and 3) were found to have originated independently and recurrently in the different lineages of the genus. A few independent events of increases in karyotype asymmetry were inferred to have accompanied the karyotype evolution in Crepis. The genome sizes of 33 Crepis species differed seven-fold and the ancestral genome size was reconstructed to be 1 C = 3.44 pg. Both decreases and increases in the genome size were inferred to have occurred within and between the lineages. The data suggest that, in addition to dysploidy, the amplification/elimination of various repetitive DNAs was likely involved in the genome and taxa differentiation in the genus.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2182
Author(s):  
Kornsorn Srikulnath ◽  
Syed Farhan Ahmad ◽  
Worapong Singchat ◽  
Thitipong Panthum

With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.


2021 ◽  
Author(s):  
Amalia Ibiapino ◽  
Mariana Baez ◽  
Miguel Angel Garcia ◽  
Mihai Costea ◽  
Saša Stefanović ◽  
...  

Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 89-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.


Sign in / Sign up

Export Citation Format

Share Document