Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis

2003 ◽  
Vol 4 (6) ◽  
pp. 673-683 ◽  
Author(s):  
Si-Ming Zhang ◽  
Deng-Qiang Wang ◽  
Ya-Ping Zhang
2018 ◽  
Author(s):  
Sandra Oliveira ◽  
Alexander Hübner ◽  
Anne-Maria Fehn ◽  
Teresa Aço ◽  
Fernanda Lages ◽  
...  

AbstractSouthwestern Angola is a region characterized by contact between indigenous foragers and incoming food-producers, involving genetic and cultural exchanges between peoples speaking Kx’a, Khoe-Kwadi and Bantu languages. Although present-day Bantu-speakers share a patrilocal residence pattern and matrilineal principle of clan and group membership, a highly stratified social setting divides dominant pastoralists from marginalized groups that subsist on alternative strategies and have previously been though to have pre-Bantu origins. Here, we compare new high-resolution sequence data from 2.3 Mb of the non-recombining Y chromosome (NRY) from 170 individuals with previously reported mitochondrial genomes (mtDNA), to investigate the population history of seven representative southwestern Angolan groups (Himba, Kuvale, Kwisi, Kwepe, Twa, Tjimba, !Xun) and to study the causes and consequences of sex-biased processes in their genetic variation. We found no clear link between the formerly Kwadi-speaking Kwepe and pre-Bantu eastern African migrants, and no pre-Bantu NRY lineages among Bantu-speaking groups, except for small amounts of “Khoisan” introgression. We therefore propose that irrespective of their subsistence strategies, all Bantu-speaking groups of the area share a male Bantu origin. Additionally, we show that in Bantu-speaking groups, the levels of among-group and between-group variation are higher for mtDNA than for NRY. These results, together with our previous demonstration that the matriclanic systems of southwestern Angolan Bantu groups are genealogically consistent, suggest that matrilineality strongly enhances both female population sizes and interpopulation mtDNA variation.


The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 346-361
Author(s):  
Erik A. Sgariglia ◽  
Kevin J. Burns

Abstract Distribution of genealogical lineages within a species is likely the result of a complicated series of ecological and historical events. Nested-clade analysis is specifically designed as an objective phylogeographic approach for inferring evolutionary processes on a spatial and temporal scale for small subclades within a larger set of intraspecific relationships. Here, we use nested-clade analysis as well as other phylogeographic methods to investigate the evolutionary history of California Thrasher (Toxostoma redivivum) populations. Inferences resulting from nested clade analysis suggest a history that includes past fragmentation, range expansion, and isolation-by-distance. Along with root information, those inferences enable the construction of a biogeographic scenario for this species involving general southern ancestry, an early north–south division, northward range expansion, and a southward back-expansion into an already populated southern region. Isolation-by-distance is also identified, particularly in southern California, indicating that gene flow between localities does occur but is restricted. Many conclusions drawn from this study are concordant with geologic data as well as phylogeographic scenarios drawn for other codistributed California taxa.


2000 ◽  
Vol 9 (8) ◽  
pp. 1061-1067 ◽  
Author(s):  
R. P. Brown ◽  
R. Campos-Delgado ◽  
J. Pestano

2013 ◽  
Vol 52 (1) ◽  
Author(s):  
Matthew Tenywa Mwanja ◽  
Vincent Muwanika ◽  
Charles Masembe ◽  
Sylvester Nyakaana ◽  
Wilson Waiswa Mwanja

2022 ◽  
Vol 12 ◽  
Author(s):  
Irene Cardinali ◽  
Martin Bodner ◽  
Marco Rosario Capodiferro ◽  
Christina Amory ◽  
Nicola Rambaldi Migliore ◽  
...  

Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.


2021 ◽  
Author(s):  
Alan R. Rogers

AbstractLegofit is a statistical package that uses genetic data to estimate the history of population size, subdivision, and admixture. This article describes a new deterministic algorithm, which makes Legofit orders of magnitude faster and more accurate.


Sign in / Sign up

Export Citation Format

Share Document