N170 – An Index of Categorical Face Perception?

2011 ◽  
Vol 25 (4) ◽  
pp. 174-179 ◽  
Author(s):  
Patrick D. Gajewski ◽  
Petra Stoerig

The N170 ERP component is larger for human faces than objects and sensitive to their orientation and race. To learn how it reflects the processing of faces of different species, we recorded event-related potentials in response to upright or inverted unfamiliar faces of human beings, monkeys, and dogs of different races as well as objects. Upright and inverted faces were presented in a between-subject design and elicited a reliable N170. It decreased from human to monkey to dog faces, and inversion enhanced and delayed it for all categories. We suggest that the results favor categorical over prototypical processing.

1996 ◽  
Vol 8 (6) ◽  
pp. 551-565 ◽  
Author(s):  
Shlomo Bentin ◽  
Truett Allison ◽  
Aina Puce ◽  
Erik Perez ◽  
Gregory McCarthy

Event-related potentials (ERPs) associated with face perception were recorded with scalp electrodes from normal volunteers. Subjects performed a visual target detection task in which they mentally counted the number of occurrences of pictorial stimuli from a designated category such as butterflies. In separate experiments, target stimuli were embedded within a series of other stimuli including unfamiliar human faces and isolated face components, inverted faces, distorted faces, animal faces, and other nonface stimuli. Human faces evoked a negative potential at 172 msec (N170), which was absent from the ERPs elicited by other animate and inanimate nonface stimuli. N170 was largest over the posterior temporal scalp and was larger over the right than the left hemisphere. N170 was delayed when faces were presented upside-down, but its amplitude did not change. When presented in isolation, eyes elicited an N170 that was significantly larger than that elicited by whole faces, while noses and lips elicited small negative ERPs about 50 msec later than N170. Distorted human faces, in which the locations of inner face components were altered, elicited an N170 similar in amplitude to that elicited by normal faces. However, faces of animals, human hands, cars, and items of furniture did not evoke N170. N170 may reflect the operation of a neural mechanism tuned to detect (as opposed to identify) human faces, similar to the “structural encoder” suggested by Bruce and Young (1986). A similar function has been proposed for the face-selective N200 ERP recorded from the middle fusiform and posterior inferior temporal gyri using subdural electrodes in humans (Allison, McCarthy, Nobre, Puce, & Belger, 1994c). However, the differential sensitivity of N170 to eyes in isolation suggests that N170 may reflect the activation of an eye-sensitive region of cortex. The voltage distribution of N170 over the scalp is consistent with a neural generator located in the occipitotemporal sulcus lateral to the fusiform/inferior temporal region that generates N200.


2020 ◽  
Author(s):  
Sicong Liu ◽  
Jonathan Folstein ◽  
Lawrence Gregory Appelbaum ◽  
Gershon Tenenbaum

Although the unwanted intrusive thoughts (UITs) exist widely in human beings and show similar characteristics between clinical and nonclinical forms, its control process remains unclear. Thoughts of choking under pressure, particularly among high-achieving athletes, represent a meaningful UIT type due to their psychological and performance-related impact. Taking a dynamic view of UIT control process, this study tested the effect of thought-control strategies among sub-elite to elite athletes, applied to individualized choking thoughts. Ninety athletes recollected recent athletic choking experiences prior to being randomized into one of three thought control interventions using strategies of either acceptance, passive monitoring (control), or suppression. To control for individual differences, athletes’ working memory capacity was measured and modeled as a covariate at baseline. The activation of choking thoughts during and after the intervention was gauged through multiple measurement approaches including conscious presence in mind, priming, and event-related potentials (P3b and N400 amplitudes). Results indicated that, relative to the control, suppression led to enhanced priming and reduced conscious presence of choking thoughts, whereas acceptance resulted in an opposite pattern of reduced priming and increased conscious presence of choking thoughts. In addition, thought-related stimuli elicited less negative-going N400 amplitudes and more positive-going P3b amplitudes than control stimuli. These findings advance understandings of the control mechanism underpinning UITs, and generate applied implications regarding UIT control in high-risk populations such as those with athletic expertise.


2021 ◽  
pp. 095679762199666
Author(s):  
Sebastian Schindler ◽  
Maximilian Bruchmann ◽  
Claudia Krasowski ◽  
Robert Moeck ◽  
Thomas Straube

Our brains rapidly respond to human faces and can differentiate between many identities, retrieving rich semantic emotional-knowledge information. Studies provide a mixed picture of how such information affects event-related potentials (ERPs). We systematically examined the effect of feature-based attention on ERP modulations to briefly presented faces of individuals associated with a crime. The tasks required participants ( N = 40 adults) to discriminate the orientation of lines overlaid onto the face, the age of the face, or emotional information associated with the face. Negative faces amplified the N170 ERP component during all tasks, whereas the early posterior negativity (EPN) and late positive potential (LPP) components were increased only when the emotional information was attended to. These findings suggest that during early configural analyses (N170), evaluative information potentiates face processing regardless of feature-based attention. During intermediate, only partially resource-dependent, processing stages (EPN) and late stages of elaborate stimulus processing (LPP), attention to the acquired emotional information is necessary for amplified processing of negatively evaluated faces.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-115
Author(s):  
Eva Koderman

Abstract Anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger, producing increased attention to a perceived threat in one's environment. To further examine this exploited the temporal resolution afforded by event-related potentials to investigate the impact of predictability of threat on early perceptual activity. We recruited 28 participants and utilized a within-subject design to examine hypervigilance in anticipation of shock, unpleasant picture and unpleasant sound during a task with unpredictable, predictable and no threat. We investigated if habituation to stimuli was present by asking the participants to rate unpleasantness and intensity of the stimuli before and after the experiment. We observed hypervigilance in the unpredictable threat of shock. Habituation was observed for the visual stimuli. The present study suggests that unpredictability enhances attentional engagement with neutral somatosensory stimuli when the threat is of the same modality, meaning we observed the presence of hypervigilance which is a characteristic of anxiety.


Author(s):  
Shozo Tobimatsu

There are two major parallel pathways in humans: the parvocellular (P) and magnocellular (M) pathways. The former has excellent spatial resolution with color selectivity, while the latter shows excellent temporal resolution with high contrast sensitivity. Visual stimuli should be tailored to answer specific clinical and/or research questions. This chapter examines the neural mechanisms of face perception using event-related potentials (ERPs). Face stimuli of different spatial frequencies were used to investigate how low-spatial-frequency (LSF) and high-spatial-frequency (HSF) components of the face contribute to the identification and recognition of the face and facial expressions. The P100 component in the occipital area (Oz), the N170 in the posterior temporal region (T5/T6) and late components peaking at 270-390 ms (T5/T6) were analyzed. LSF enhanced P100, while N170 was augmented by HSF irrespective of facial expressions. This suggested that LSF is important for global processing of facial expressions, whereas HSF handles featural processing. There were significant amplitude differences between positive and negative LSF facial expressions in the early time windows of 270-310 ms. Subsequently, the amplitudes among negative HSF facial expressions differed significantly in the later time windows of 330–390 ms. Discrimination between positive and negative facial expressions precedes discrimination among different negative expressions in a sequential manner based on parallel visual channels. Interestingly, patients with schizophrenia showed decreased spatial frequency sensitivities for face processing. Taken together, the spatially filtered face images are useful for exploring face perception and recognition.


1988 ◽  
Vol 26 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Sarah E. Barrett ◽  
Michael D. Rugg ◽  
David I. Perrett

2006 ◽  
Vol 18 (8) ◽  
pp. 1343-1358 ◽  
Author(s):  
Viola Macchi Cassia ◽  
Dana Kuefner ◽  
Alissa Westerlund ◽  
Charles A. Nelson

This study examined the sensitivity of early face-sensitive event-related potential (ERP) components to the disruption of two structural properties embedded in faces, namely, “updown featural arrangement” and “vertical symmetry.” Behavioral measures and ERPs were recorded as adults made an orientation judgment for canonical faces and distorted faces that had been manipulated for either or both of the mentioned properties. The P1, the N170, and the vertex positive potential (VPP) exhibited a similar gradient in sensitivity to the two investigated properties, in that they all showed a linear increase in amplitude or latency as the properties were selectively disrupted in the order of (1) up-down featural arrangement, (2) vertical symmetry, and (3) both up-down featural arrangement and vertical symmetry. Exceptions to this finding were seen for the amplitudes of the N170 and VPP, which were largest for the stimulus in which solely vertical symmetry was disrupted. Interestingly, the enhanced amplitudes of the N170 and VPP are consistent with a drop in behavioral performance on the orientation judgment for this stimulus.


Sign in / Sign up

Export Citation Format

Share Document