scholarly journals Quasi-biennial oscillation and quasi-biennial oscillation–annual beat in the tropical total column ozone: A two-dimensional model simulation

2004 ◽  
Vol 109 (D16) ◽  
Author(s):  
Xun Jiang
2013 ◽  
Vol 7 (1) ◽  
pp. 92-109 ◽  
Author(s):  
Jose Luis Pinedo ◽  
Fernando Mireles-Garcia ◽  
Carlos Rios ◽  
Victor Manuel Garcia-Saldivar ◽  
J. Ignacio Davila-Rangel ◽  
...  

Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument OMI Version 8 data, from November 1978 to February 2013, have been used to retrieve the shape and amplitude of the daily mean of the total column ozone (TCO) and their associated dispersion over eleven selected 1°-wide latitude bands. Their inter-annual variation at 44.5° S, 23.5° S, 23.5° N, 44.5° N and 59.5° N shows a quasi-regular periodic behavior. However, Polar Regions exhibit abrupt changes, whereas at the Equator a complex perturbation of periodicity is highlighted, which could be associated to the effect of the quasi-biennial oscillation (QBO). The discrete 1°-wide latitude bands show a stabilization of TCO levels from the late nineties, but they do not display a generalized recovery. Indeed, at the Equator, between 1997 and 2013, a 1.4% per decade decrease in the total column ozone is exhibited, which may be significant given that during the 1987-1994 period the decrease was only of 0.5%. Additionally, the discrete bands reveal the appearance of a perturbation of the inter-annual ozone variations at 59.5° S, in contrast to regular behavior in the Northern Hemisphere and at other latitudes. The perturbation apparently begins in the 1980-1984 time series and is clear and systematic after 1998.


2007 ◽  
Vol 7 (21) ◽  
pp. 5625-5637 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and a detailed investigation of the mechanisms responsible for the event has not previously been undertaken. In this study, the 1985 Southern Hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced reduction in ozone. Similar QBO and solar cycle influences prevailed in 1997 and 2006 when again total column ozone was found to be suppressed over southern mid-latitudes. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in effecting the anomaly.


2006 ◽  
Vol 6 (2) ◽  
pp. 525-537 ◽  
Author(s):  
S. Guillas ◽  
G. C. Tiao ◽  
D. J. Wuebbles ◽  
A. Zubrow

Abstract. In this paper, we introduce a statistical method for examining and adjusting chemical-transport models. We illustrate the findings with total column ozone predictions, based on the University of Illinois at Urbana-Champaign 2-D (UIUC 2-D) chemical-transport model of the global atmosphere. We propose a general diagnostic procedure for the model outputs in total ozone over the latitudes ranging from 60° South to 60° North to see if the model captures some typical patterns in the data. The method proceeds in two steps to avoid possible collinearity issues. First, we regress the measurements given by a cohesive data set from the SBUV(/2) satellite system on the model outputs with an autoregressive noise component. Second, we regress the residuals of this first regression on the solar flux, the annual cycle, the Antarctic or Arctic Oscillation, and the Quasi Biennial Oscillation. If the coefficients from this second regression are statistically significant, then they mean that the model did not simulate properly the pattern associated with these factors. Systematic anomalies of the model are identified using data from 1979 to 1995, and statistically corrected afterwards. The 1996–2003 validation sample confirms that the combined approach yields better predictions than the direct UIUC 2-D outputs.


2013 ◽  
Vol 13 (3) ◽  
pp. 7081-7112 ◽  
Author(s):  
P. J. Nair ◽  
S. Godin-Beekmann ◽  
J. Kuttippurath ◽  
G. Ancellet ◽  
F. Goutail ◽  
...  

Abstract. The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP – 43.93° N, 5.71° E), using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from Light detection and ranging, ozonesondes, Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment and Aura Microwave Limb Sounder. A multi-variate regression model with quasi biennial oscillation (QBO), solar flux, aerosol optical thickness, heat flux, North Atlantic oscillation (NAO) and piecewise linear trend (PWLT) or Equivalent Effective Stratospheric Chlorine (EESC) functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in 15–45 km and in 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.39±0.26 and −1.40±0.25 DU yr−1, respectively over 1984–1996 and about 0.65±0.32 and 0.42±0.08 DU yr−1, respectively over 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends in 1984–1996 and are about −0.5 and −0.8 % yr−1 in the lower and upper stratosphere, respectively. In 1997–2010, the EESC-based and PWLT trends are significant and of order 0.3 and 0.1 % yr−1, respectively in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the mid-latitudes.


2013 ◽  
Vol 13 (18) ◽  
pp. 9623-9639 ◽  
Author(s):  
S. Brönnimann ◽  
J. Bhend ◽  
J. Franke ◽  
S. Flückiger ◽  
A. M. Fischer ◽  
...  

Abstract. We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.


1983 ◽  
Vol 10 (11) ◽  
pp. 1053-1056 ◽  
Author(s):  
Louis A. Capone ◽  
Owen B. Toon ◽  
Robert C. Whitten ◽  
Richard P. Turco ◽  
Christopher A. Riegel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document