scholarly journals Comment on “Heat capacity, time constant, and sensitivity of Earth's climate system” by S. E. Schwartz

2008 ◽  
Vol 113 (D15) ◽  
Author(s):  
Nicola Scafetta
Author(s):  
Roger G. Barry ◽  
Eileen A. Hall-McKim

Author(s):  
Richard Passarelli ◽  
David Michel ◽  
William Durch

The Earth’s climate system is a global public good. Maintaining it is a collective action problem. This chapter looks at a quarter-century of efforts to understand and respond to the challenges posed by global climate change and why the collective political response, until very recently, has seemed to lag so far behind our scientific knowledge of the problem. The chapter tracks the efforts of the main global, intergovernmental process for negotiating both useful and politically acceptable responses to climate change, the UN Framework Convention on Climate Change, but also highlights efforts by scientific and environmental groups and, more recently, networks of sub-national governments—especially cities—and of businesses to redefine interests so as to meet the dangers of climate system disruption.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


2004 ◽  
Vol 130 (603) ◽  
pp. 2677-2701 ◽  
Author(s):  
Kevin E. Trenberth ◽  
David P. Stepaniak

Weather ◽  
2004 ◽  
Vol 59 (10) ◽  
pp. 288-288
Author(s):  
Mat Collins

Sign in / Sign up

Export Citation Format

Share Document