Stress changes and aftershock distribution of the 1994 and 2006 Java subduction zone earthquake sequences

2011 ◽  
Vol 116 (B6) ◽  
Author(s):  
Maya El Hariri ◽  
Susan L. Bilek
2017 ◽  
Vol 392 ◽  
pp. 30-40 ◽  
Author(s):  
Alexander R. Simms ◽  
Regina DeWitt ◽  
Julie Zurbuchen ◽  
Patrick Vaughan

2021 ◽  
Author(s):  
Pierre Henry ◽  
Anthony Lomax ◽  
Sophie VIseur

<p>The architecture of fault damage zones combines various elements. Halos of intense fracturing forms around principal slip planes, possibly resulting from the shearing of slip surface rugosity or from dynamic stresses caused by earthquake ruptures. Splays forming off the tips and off the edges of a growing fault result in larger scale fracture networks and damage zones. Faults also grow by coalescence of en-echelon segments, such as Riedel fractures in a shear zone, and stress concentration at the steps results in linking damage zones. We show that these various elements of a shear-crack system can be recognized at seismogenic depth in earthquake sequences. Here we examine high-precision, absolute earthquake relocations for the Mw5.7 Magna UT, Mw6.4 Monte Cristo CA and Mw 5.8 Lone Pine CA earthquake sequences in 2020. We use iterative, source-specific, station corrections to loosely couple and improve event locations, and then waveform similarity between events as a measure for strongly coupling probabilistic event locations between multiplet events to greatly improve precision (see presentation EGU21-14608, and Lomax, 2020). The relocated seismicity shows mainly sparse clusters of seismicity, from which we infer multi-scale fault geometries. The uncertainty on earthquake locations (a few hundred meters) is typically larger than the width of halo damage zones observed in the field so that it is not possible to distinguish small aftershocks that could occur on a fracture within the halo or on a principal slip plane.</p><p>The relocated Magna seismicity shows a west-dipping, normal-faulting mainshock surface with an isolated, mainshock hypocenter at its base, surrounded up-dip in the hanging wall by a chevron of complex, clustered seismicity, likely related to secondary fault planes. This seismicity and a shallower up-dip cluster of aftershock seismicity correspond to clusters of background seismicity. The Lone Pine seismicity defines a main, east-dipping normal-faulting surface whose bottom edge connects to a steeper dipping splay, surrounded by a few clusters of background and reactivated seismicity. The space-time relation between background seismicity and multi-scale, foreshock-mainshock sequences are clearly imaged. The Monte Cristo Range seismicity (Lomax 2020) illuminates two, en-echelon primary faulting surfaces and surrounding, characteristic shear-crack features such as edge, wall, tip, and linking damage zones, showing that this sequence ruptured a complete shear crack system. In this example the width of the damage zone increases toward the earth surface.  Shallow damage zones align with areas of dense surface fracturing, subsidence and after-slip, showing the importance of damage zones for shaking intensity and earthquake hazard.</p><p>For all three sequences, some of the seismicity clusters delineate planar surfaces and concentrate along the edges of the suspected main slip patches. Other clusters of seismicity may result from larger scale damage associated with splay faults, en-echelon systems and linking zones, or with zones of background seismicity reactivated by stress changes from mainshock rupture. These types of seismicity and faulting structures may be more developed in the case of a complex rupture on an immature fault</p><p>__<br>Lomax (2020) The 2020 Mw6.5 Monte Cristo Range, Nevada earthquake: relocated seismicity shows rupture of a complete shear-crack system. https://eartharxiv.org/repository/view/1904</p>


2006 ◽  
Vol 118 (9-10) ◽  
pp. 1051-1074 ◽  
Author(s):  
U. Cochran ◽  
K. Berryman ◽  
J. Zachariasen ◽  
D. Mildenhall ◽  
B. Hayward ◽  
...  

Geosphere ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 2067-2129 ◽  
Author(s):  
Jason R. Patton ◽  
Chris Goldfinger ◽  
Ann E. Morey ◽  
Ken Ikehara ◽  
Chris Romsos ◽  
...  

2020 ◽  
Vol 103 (1) ◽  
pp. 659-683
Author(s):  
Zachary D. Swick ◽  
Elizabeth A. Baker ◽  
Michael Elliott ◽  
Alan Zelicoff

2006 ◽  
Vol 62 (4) ◽  
pp. 877-890
Author(s):  
Atsushi NOZU ◽  
Shogo MIYAJIMA ◽  
Go NAKANISHI ◽  
Masayuki YAMADA

2020 ◽  
Vol 224 (2) ◽  
pp. 1157-1173
Author(s):  
M Marchandon ◽  
M Vergnolle ◽  
O Cavalié

SUMMARY Calculations of Coulomb stress changes have shown that moderate to large earthquakes may increase stress at the location of future earthquakes. Coulomb stress transfers have thus been widely accepted to explain earthquake sequences, especially for sequences occurring within parallel or collinear fault systems. Relating, under this framework, successive earthquakes occurring within more complex fault systems (i.e. conjugate fault system) is more challenging. In this study, we assess which ingredients of the Coulomb stress change theory are decisive for explaining the succession of three large (Mw 7+) earthquakes that occurred on a conjugate fault system in the NE Lut, East Iran, during a 30-yr period. These earthquakes belong to a larger seismic sequence made up of 11 earthquakes (Mw 5.9+) from 1936 to 1997. To reach our goal, we calculate, at each earthquake date, the stress changes generated by the static deformation of the preceding earthquakes, the following post-seismic deformation due to the viscoelastic relaxation of the lithosphere, and the interseismic deformation since 1936. We first show that accurately modelling the source and receiver fault geometry is crucial to precisely estimating Coulomb stress changes. Then we show that 7 out of 10 earthquakes of the NE Lut sequence, considering the uncertainties, are favoured by the previous earthquakes. Furthermore, the last two M7+ earthquakes of the sequence (1979 and 1997) have mainly been favoured by the moderate Mw ∼ 6 earthquakes. Finally, we investigate the link between the Coulomb stress changes due to previous earthquakes and the rupture extension of the next earthquake and show that a correlation does exist for some earthquakes but is not systematic.


Sign in / Sign up

Export Citation Format

Share Document