aftershock distribution
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dian Kusumawati ◽  
David P. Sahara ◽  
Sri Widiyantoro ◽  
Andri Dian Nugraha ◽  
Muzli Muzli ◽  
...  

Herein, we applied the fault instability criterion and integrated it with the static Coulomb stress change (ΔCFS) to infer the mechanism of the 2016 Mw 6.5 Pidie Jaya earthquake and its aftershock distribution. Several possible causative faults have been proposed; however, the existence of a nearby occurrence, the 1967 mb 6.1 event, created obscurity. Hence, we applied the fault instability analysis to the Pidie Jaya earthquake 1) to corroborate the Pidie Jaya causative fault analysis and 2) to analyze the correlation between ΔCFS distribution imparted by the mainshock and the fault instability of the reactivated fault planes derived from the focal solution of the Pidie Jaya aftershocks. We performed the fault instability analysis for two possible source faults: the Samalanga-Sipopok Fault and the newly inferred Panteraja Fault. Although the maximum instability value of the Samalanga-Sipopok Fault is higher, the dip value of the Panteraja Fault coincides with its optimum instability. Therefore, we concluded that Panteraja was the causative fault plane. Furthermore, a link between the 1967 mb 6.1 event and the 2016 Mw 6.5 earthquake is discussed. To analyze the correlation between the fault instability and the ΔCFS, we resolved the ΔCFS of the Pidie Jaya mainshock on its aftershock planes and compared the ΔCFS results with the fault instability calculation on each aftershock plane. We discussed the possibility of conjugate failure as shown by the aftershock fault instability. Related to the ΔCFS and fault instability comparison, we found that not all the aftershocks have positive ΔCFSs, but their instability value is high. Thus, we suggest that the fault plane instability plays a role in events that do not occur in positive ΔCFS areas. Apart from these, we also showed that the off-Great Sumatran Fault (Panteraja and Samalanga-Sipopok Faults) are unstable in the Sumatra regional stress setting, thereby making it more susceptible to slip movement.


2021 ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

Abstract This study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Yogyakarta earthquake of magnitude Mw = 6.3 on May 27, 2006. Therefore, this study is to provide a more precise answer to the controversial source mechanism. This study uses moment tensor inversion to obtain fault plane parameters and joint inversion to obtain spatial and temporal slip distributions during an earthquake. The coseismic slip distribution is overlaid with the relocated aftershock distribution to see the stress field variations around the tectonic area of the study. Moment tensor inversion uses near-field data, and joint inversion uses near-field and teleseismic body wave data. The data is filtered by trial and error using a bandpass filter with frequency pairs and velocity models from several previous studies. The green's function for moment tensor inversion calculated using the extended reflectivity method and joint inversion computed using the Kikuchi and Kanamori methods. In this study, we apply the Akaike Bayesian Information Criterion (ABIC) method to obtain more stable inversion results. The results of the mainshock and aftershock moment tensor inversion show different fault types. The mainshock fault types are strike-slip and dip-normal types, while the 8th aftershock is of the same type as the mainshock, while the 9th and 16th June are strike slips. The joint inversion results show two asperities. The maximum slip is 0.78 m, with the first asperity 10 km south of the mainshock and the second asperity 10 km north of the mainshock. The obtained source parameters are total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4, with a source depth of 12 km and a source duration of 28 seconds. Slip distribution overlay with aftershock distribution shows compatibility. The type of focus mechanism that results from this joint inversion is the oblique.


Author(s):  
Jing Ci Neo ◽  
Yihe Huang ◽  
Dongdong Yao ◽  
Shengji Wei

ABSTRACT The locations of aftershocks are often observed to be on the same fault plane as the mainshock and used as proxies for its rupture area. Recent developments in earthquake relocation techniques have led to great improvements in the accuracy of earthquake locations, offering an unprecedented opportunity to quantify both the aftershock distribution and the mainshock rupture area. In this study, we design a consistent approach to calculate the area enclosed by aftershocks of 12 Mw≥5.4 mainshocks in California, normalized by the mainshock rupture area derived from slip contours. We also investigate the Coulomb stress change from mainshock slip and compare it with the aftershock zone. We find that overall, the ratios of aftershock zone area to mainshock rupture area, hereinafter referred to as “aftershock ratio”, lie within a range of 0.5–5.4, with most values being larger than 1. Using different slip-inversion models for the same mainshock can have a large impact on the results, but the ratios estimated from both the relocated catalogs and Advanced National Seismic System catalog have similar patterns. The aftershock ratios based on relocated catalogs of southern California fall between 0.5 and 4.3, whereas they exhibit a wider range from 1 to 5.4 for northern California. Aftershock ratios for the early aftershock window (within one-day) show a similar range but of smaller values than using the entire aftershock duration, and we propose that continuing afterslip could contribute to the expanding aftershock zone area following several mainshocks. Our results show that areas with positive Coulomb stress change scale with aftershock zone areas, and spatial distribution of aftershocks represents stress release from mainshock rupture and continuing postseismic slip.


2020 ◽  
Vol 91 (2A) ◽  
pp. 733-744 ◽  
Author(s):  
Chisheng Wang ◽  
Xinyu Wang ◽  
Wenqun Xiu ◽  
Bochen Zhang ◽  
Guohong Zhang ◽  
...  

Abstract We invert Interferometric Synthetic Aperture Radar observations for the slip models of the 28 July Mw 6.4, 5 August Mw 6.9, and 19 August Mw 6.9 earthquakes in the 2018 Lombok earthquake sequence. The geodetic measurements and aftershock distribution suggest three south-dipping fault planes with shallow depths for the three events. They are likely associated with the imbricate thrust faults above the main Flores fault. Obvious strike and dip differences were found on the seismogenic faults, which implies probable fault segmentation and explains the cascading fault behaviors with moderate magnitudes. The three events peaked at depths of 12.38, 16.9, and 25.9 km. The estimated moments reach 7.59×1018, 3.33×1019, and 4.61×1019  N·m, equal to Mw 6.52, Mw 6.95, and Mw 7.04 events, respectively. The derived slip distribution covers most of the area in the Lombok fault plane. Future seismic hazard on the seismic gap to the east of Lombok should be noted.


2019 ◽  
Vol 90 (6) ◽  
pp. 2121-2131
Author(s):  
Chong Zang ◽  
Sidao Ni ◽  
Zhichao Shen

ABSTRACT The Mw 6.6 Hokkaido Eastern Iburi earthquake striking southern Hokkaido Island on 5 September 2018 was a disastrous and peculiar event. In contrast to the usually shallow crustal earthquakes, this event occurred at a hypocentral depth about 37 km, close to the Moho discontinuity. To infer the rupture feature of the 2018 Hokkaido earthquake, we determine focal mechanism and centroid depth of the event with inversion of teleseismic waveforms. The result reveals that the centroid (at depth about 26 km) of this thrust earthquake is shallower than the hypocenter, which suggests the upward rupture propagation and dominant rupture in the lower crust. We also investigate the causative fault and rupture directivity based on waveform modeling. The steeply dipping fault (70°) with strike in the north–south direction is preferred to be the causative fault. The total dimension of rupture is estimated to be about 30 km, based on the aftershock distribution and rupture directivity. We propose that a seismogenic model with low temperature and complex stress field in the lower crust above the subduction‐zone interface may explain this event.


2019 ◽  
Vol 520 ◽  
pp. 63-76 ◽  
Author(s):  
H. Agurto-Detzel ◽  
Y. Font ◽  
P. Charvis ◽  
M. Régnier ◽  
A. Rietbrock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document