Contributions to sea level variability along the Norwegian coast for 1960-2010

2012 ◽  
Vol 117 (C5) ◽  
pp. n/a-n/a ◽  
Author(s):  
K. Richter ◽  
J. E. Ø. Nilsen ◽  
H. Drange
2021 ◽  
Author(s):  
Fabio Mangini ◽  
Léon Chafik ◽  
Antonio Bonaduce ◽  
Laurent Bertino ◽  
Jan Even Øie Nilsen

Abstract. Sea-level variations in coastal areas can differ significantly from those in the nearby open ocean. Monitoring coastal sea-level variations is therefore crucial to understand how climate variability can affect the densely populated coastal regions of the globe. In this paper, we study the sea-level variability along the coast of Norway by means of in situ records, satellite altimetry data, and a network of eight hydrographic stations over a period spanning 16 years (from 2003 to 2018). At first, we evaluate the performance of the ALES-reprocessed coastal altimetry dataset by comparing it with the sea-level anomaly from tide gauges over a range of timescales, which include the long-term trend, the annual cycle and the detrended and deseasoned sea level anomaly. We find that coastal altimetry outperforms conventional altimetry products at most locations along the Norwegian coast. We later take advantage of the coastal altimetry dataset to perform a sea level budget along the Norwegian coast. We find that the thermosteric and the halosteric signals give a comparable contribution to the sea-level trend along the Norwegian coast, except for three, non-adjacent hydrographic stations, where salinity variations affect the sea-level trend more than temperature variations. We also find that the sea-level annual cycle is more affected by variations in temperature than in salinity, and that both temperature and salinity give a comparable contribution to the detrended and deseasoned sea-level along the entire Norwegian coast.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Shiva Shankar Manche ◽  
Rabindra K. Nayak ◽  
Prakash Chandra Mohanty ◽  
M. V. R. Shesasai ◽  
V. K. Dadhwal

Author(s):  
Dina A Sarsito ◽  
Muhammad Syahrullah ◽  
Dudy D Wijaya ◽  
Dhota Pradipta ◽  
Heri Andreas

2015 ◽  
Vol 45 (9-10) ◽  
pp. 2633-2646 ◽  
Author(s):  
Denis L. Volkov ◽  
Felix W. Landerer

2001 ◽  
Vol 24 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. K. Singh ◽  
Sujit Basu ◽  
Raj Kumar ◽  
Vijay K. Agarwal

2006 ◽  
Vol 36 (9) ◽  
pp. 1739-1750 ◽  
Author(s):  
Cécile Cabanes ◽  
Thierry Huck ◽  
Alain Colin de Verdière

Abstract Interannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°–20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N.


Sign in / Sign up

Export Citation Format

Share Document