annual cycle
Recently Published Documents


TOTAL DOCUMENTS

1823
(FIVE YEARS 297)

H-INDEX

93
(FIVE YEARS 8)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Pei-Chi Ho ◽  
Gwo-Ching Gong ◽  
Vladimir Mukhanov ◽  
Zhi-Yu Zhu ◽  
An-Yi Tsai

Seasonal variations in the picophytoplankton community structure (Synechococcus spp. and picoeukaryotes) were studied by flow cytometry in the coastal ecosystem of the subtropical western Pacific from October 2019 to September 2020. Synechococcus spp. was dominant in abundance during the study period, with its density ranging from 0.05 to 5.6 × 104 cells mL−1; its maximum occurred in July 2020. Picoeukaryotes were less abundant, with their density ranging from 0.2 to 13.6 × 103 cells mL−1. Their highest abundance was recorded in January 2020. The growth rates of Synechococcus spp. and picoeukaryotes ranged from −0.39 to 1.42 d−1 and 0.38 to 2.46 d−1, respectively, throughout the study period. Overall, the growth rate of the picoeukaryotes was significantly higher than that of Synechococcus spp. It is interesting to note that the grazing mortality of Synechococcus spp. and picoeukaryotes during the warmer period (April to September) was relatively low. Based on this study, we suggest that mixotrophic nanoflagellates lowered their feeding activity that obtained nutrients from prey and instead used additional nutrients during the incubation experiments. Our study demonstrated that a shift in the picophytoplankton community composition and grazing activity of predacious nanoflagellates in cold and warm periods can impact on the seasonal dynamics of the microbial food web.


2022 ◽  
Vol 8 ◽  
Author(s):  
Luke Storrie ◽  
Nigel E. Hussey ◽  
Shannon A. MacPhee ◽  
Greg O’Corry-Crowe ◽  
John Iacozza ◽  
...  

Dive behavior represents multiple ecological functions for marine mammals, but our understanding of dive characteristics is typically limited by the resolution or longevity of tagging studies. Knowledge on the time-depth structures of dives can provide insight into the behaviors represented by vertical movements; furthering our understanding of the ecological importance of habitats occupied, seasonal shifts in activity, and the energetic consequences of targeting prey at a given depth. Given our incomplete understanding of Eastern Beaufort Sea (EBS) beluga whale behavior over an annual cycle, we aimed to characterize dives made by belugas, with a focus on analyzing shifts in foraging strategies. Objectives were to (i) characterize and classify the range of beluga-specific dive types over an annual cycle, (ii) propose dive functions based on optimal foraging theory, physiology, and association with environmental variables, and (iii) identify whether belugas undergo seasonal shifts in the frequency of dives associated with variable foraging strategies. Satellite-linked time-depth-recorders (TDRs) were attached to 13 male belugas from the EBS population in 2018 and 2019, and depth data were collected in time series at a 75 s sampling interval. Tags collected data for between 13 and 357 days, including three tags which collected data across all months. A total of 90,211 dives were identified and characterized by twelve time and depth metrics and classified into eight dive types using a Gaussian mixed modeling and hierarchical clustering analysis approach. Dive structures identify various seasonal behaviors and indicate year-round foraging. Shallower and more frequent diving during winter in the Bering Sea indicate foraging may be energetically cheaper, but less rewarding than deeper diving during summer in the Beaufort Sea and Arctic Archipelago, which frequently exceeded the aerobic dive limit previously calculated for this population. Structure, frequency and association with environmental variables supports the use of other dives in recovery, transiting, and navigating through sea ice. The current study provides the first comprehensive description of the year-round dive structures of any beluga population, providing baseline information to allow improved characterization and to monitor how this population may respond to environmental change and increasing anthropogenic stressors.


2022 ◽  
pp. 187-194
Author(s):  
S. Green ◽  
F. Reyes ◽  
B. Dichio ◽  
M. Mastroleo ◽  
E. Xylogiannis
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260339
Author(s):  
Bryan D. Watts ◽  
Fletcher M. Smith ◽  
Chance Hines ◽  
Laura Duval ◽  
Diana J. Hamilton ◽  
...  

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


2021 ◽  
Vol 25 (6) ◽  
pp. 364-373
Author(s):  
Valeriy Hunchenko ◽  
Oleksandr Solovey ◽  
Dmytro Solovey ◽  
Yaroslav Malojvan ◽  
Artem Yakovenko ◽  
...  

Background and Study Aim. Aim is to determine the influence of the components of special physical training on the effectiveness of certain elements of the game technique during the competitive activities of beach volleyball athletes. Material and methods. The study involved athletes (n = 20, age - 17-21 years, experience - 8-9 years), who are engaged in beach volleyball (Kherson, Ukraine). Experts (n = 5, work experience - over 20 years) from among the leading volleyball specialists were involved. Training sessions were conducted according to the author’s structure and content of special physical training (preparatory period of the annual cycle). The author's program was to increase the volume of athletic work by 10% (selective classes and integrated work) and 17% (complex classes). The classes used a developed special training device. The device is designed to practice practical game skills. The load at the first stage was 70-80% of the maximum. The load in the second stage was 80-90% of the maximum. Results. Significant (p <0.05) development of explosive power, speed and agility was revealed. There is a significant (p <0,05) increase: in the number of jump serve and spike; improving the quality/number of serve and attack; improving the quality of passing and the number of blocks. Conclusions. The proposed structure and content of special physical training and exercises on a special simulator have significantly increased the level of development of physical qualities. The athlete training program helped to improve the effectiveness of certain technical actions during competitive activities.


2021 ◽  
Vol 22 (2) ◽  
pp. 61-70
Author(s):  
Adi Mulsandi ◽  
Ardhasena Sopaheluwakan ◽  
Akhmad Faqih ◽  
Rahmat Hidayat ◽  
Yonny Koesmaryono

Intisari Iklim di wilayah Indonesia sangat dipengaruhi oleh aktivitas monsun Asia-Australia. Variabilitas kedua sistem monsun tersebut dapat direpresentasikan dengan baik masing-masing oleh indeks monsun Australian Summer Monsoon Index (AUSMI) dan Western North Pacific Monsoon Index (WNPMI). Saat ini, BMKG secara operasional menggunakan indeks AUSMI dan WNPMI untuk memonitor aktivitas monsun di wilayah Indonesia sebagai bahan prakiraan musim. Meskipun banyak literatur menyatakan bahwa wilayah Indonesia merupakan bagian dari sistem monsun Asia-Australia, namun kondisi topografi lokal yang kompleks berpotensi memodifikasi sirkulasi monsun sehingga perlu dikaji performa kedua indeks tersebut sebelum digunakan secara operasional. Penelitian ini dilakukan untuk menguji performa indeks monsun AUSMI dan WNPMI dalam menggambarkan variasi antartahunan (interannual), variasi dalam musim (intraseasonal), dan siklus tahunan (annual cycle) hujan monsun Indonesia. Hasil penelitian mengungkapkan bahwa kedua indeks memiliki performa yang sangat baik hanya di wilayah dimana indeks tersebut didefinisikan namun kurang baik untuk wilayah Indonesia seperti yang ditunjukan oleh nilai koefisien korelasi yang tidak signifikan dari hasil uji statistik antara kedua indeks dengan curah hujan dari Global Precipitation Climatology Project (GPCP) pada periode 1981-2010. Selain itu, kedua indeks juga memperlihatkan karakteristik siklus tahunan yang berbeda dengan karakteristik siklus tahunan hujan wilayah Jawa sebagai wilayah kunci monsun Indonesia. Hasil ini mengindikasikan perlunya pendefinisian indeks sendiri untuk memonitor aktivitas monsun di wilayah Indonesia.    Abstract  The climate of Indonesia is strongly affected by the Asian-Australian monsoon system. The variability of the two monsoon systems can be well represented by the Western North Pacific Monsoon Index (WNPMI) and the Australian Summer Monsoon Index (AUSMI) respectively. For producing seasonal forecast, BMKG uses the WNPMI and AUSMI monsoon index to monitor monsoon activity in Indonesia. Although most literature states that the Indonesian region is part of the Asian-Australian monsoon system, the complex local topography may modify the monsoon circulation. Hence, it is necessary to assess the performance of the two indices before they are operationally used. This study was conducted to evaluate the performance of the AUSMI and WNPMI monsoon indices in describing the annual cycle, intraseasonal and interannual variability of the Indonesian monsoon rainfall. The results revealed that the two indices only performed very well in the areas where the index was defined but lack of skill for the Indonesian region because of insignificant linear correlation based on a statistical significance test between the two indices and the Global Precipitation Climatology Project (GPCP) rainfall in the 1981-2010 period. In addition, both monsoon indices and Java rainfall showed different characteristics of the annual cycle. These results indicate that it is necessary to define a specific index for monitoring monsoon activity in Indonesia.


2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Linus Hedh ◽  
Juliana Dänhardt ◽  
Anders Hedenström

Abstract A common migratory pattern in birds is that northerly breeding populations migrate to more southerly non-breeding sites compared to southerly breeding populations (leap-frog migration). Not only do populations experience differences in migration distances, but also different environmental conditions, which may vary spatiotemporally within their annual cycles, creating distinctive selective pressures and migratory strategies. Information about such adaptations is important to understand migratory drivers and evolution of migration patterns. We use light-level geolocators and citizen science data on regional spring arrivals to compare two populations of common ringed plover Charadrius hiaticula breeding at different latitudes. We (1) describe and characterize the annual cycles and (2) test predictions regarding speed and timing of migration. The northern breeding population (NBP) wintered in Africa and the southern (SBP) mainly in Europe. The annual cycles were shifted temporally so that the NBP was always later in all stages. The SBP spent more than twice as long time in the breeding area, but there was no difference in winter. The NBP spent more time on migration in general. Spring migration speed was lower in the SBP compared to autumn speed of both populations, and there was no difference in autumn and spring speed in the NBP. We also found a larger variation in spring arrival times across years in the SBP. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season, and proximity to the breeding area shape the annual cycle and migratory strategies. Significance statement Migration distance, climate, and the resulting composition of the annual cycle are expected to influence migration strategies and timing in birds. Testing theories regarding migration behaviours are challenging, and intraspecific comparisons over the full annual cycle are still rare. Here we compare the spatiotemporal distributions of two latitudinally separated populations of common ringed plovers using light-level geolocators. We found that there was a larger long-term variation in first arrival dates and that migration speed was slower only in spring in a temperate, short-distance migratory population, compared to an Arctic, long-distance migratory population. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season and proximity to the breeding area shape the annual cycle and migratory behaviours.


Author(s):  
B. Rezvantsev

The proximity of the three ancient sanctuaries to each other on the flat top of the Table Mountain against the background of the sacred peaks of Kazbek and Tsey-Loam, the opportunity to observe the sunrises and sunsets in the highlands of the Caucasus, cosmogonic myths, all this gave an assumption about the astronomical functions of these sanctuaries. The purpose of the study was to prove that these ancient sanctuaries were used by the priests to determine the key moments in the annual cycle of the Sun and were a calendar. This is proved by using special computer programs and calculators that determine the azimuth and altitude of the Sun; instrumental observations and measurements on the ground. It is established that the shrines of Myat-Seli and Myater-Dyal on Table Mountain in Ingushetia are a complex of medieval solar near-horizon observatories. And it is hypothesized that these sanctuaries were built on the site from which solar cycles were observed from about the beginning of the 1st millennium BC. This work also provides prerequisites for determining various astronomical observations from sanctuaries and the presence of other ancient observatories in the Caucasus. A method has been developed for searching for prehistoric solar, lunar and stellar near-horizon observatories.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Erich R Eberts ◽  
Christopher G Guglielmo ◽  
Kenneth C Welch

Many small endotherms use torpor to reduce metabolic rate and manage daily energy balance. However, the physiological 'rules' that govern torpor use are unclear. We tracked torpor use and body composition in ruby-throated hummingbirds (Archilochus colubris), a long-distance migrant, throughout the summer using respirometry and quantitative magnetic resonance. During the mid-summer, birds entered torpor at consistently low fat stores (~5% of body mass), and torpor duration was negatively related to evening fat load. Remarkably, this energy-emergency strategy was abandoned in the late summer when birds accumulated fat for migration. During the migration period, birds were more likely to enter torpor on nights when they had higher fat stores, and fat gain was positively correlated with the amount of torpor used. These findings demonstrate the versatility of torpor throughout the annual cycle and suggest a fundamental change in physiological feedback between adiposity and torpor during migration. Moreover, this study highlights the underappreciated importance of facultative heterothermy in migratory ecology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jire Xi ◽  
Xueqin Deng ◽  
Gerelt Zhao ◽  
Nyambayar Batbayar ◽  
Iderbat Damba ◽  
...  

Abstract Background The Eurasian Spoonbill (Platalea leucorodia) occurs throughout Eurasia and North and sub-Saharan Africa, with three recognized subspecies and six geographically distributed populations. However, in China, we knew almost nothing about migration routes, habitat use and effectiveness of current site protection measures for this species. Methods We deployed Global Positioning System/Global System for Mobile Communications (GPS/GSM) satellite trackers on 29 Eurasian Spoonbills captured in summer in Mongolia and northeastern China, to obtain complete migration routes data from 10 individuals from 19 complete migration episodes. Results Tracking data showed no geographical overlap during the annual cycle in Eurasian Spoonbills marked in the two main summering areas. Birds marked in the Naoli River Basin in Heilongjiang Province, China, wintered along the Jiangsu coastline in China, while Eurasian Spoonbills from two discrete summering areas (in Inner and western Mongolia) overwintered inland in the Yangtze River floodplain of China. Excluding the single Inner Mongolian bird, spring migration was significantly faster than autumn migration in the other two groups of birds. Eurasian Spoonbills mainly used water, wetland and grassland habitats in summer, but almost exclusively water in winter. Lack of protection of staging sites used by all the birds in spring and poor levels of protection throughout the annual cycle for western Mongolian birds (5–22%) gives considerable cause for concern, although sites used in other time by East Mongolian and Naoli River birds in the rest of their annual life cycle enjoyed good levels of protection (49–95%). Conclusions These results revealed previously unknown relationships between summering and wintering areas, migration routes and stopover sites for Eurasian Spoonbills wintering in China, suggesting the existence of discrete biogeographical population units. They also identified winter habitat use of Eurasian Spoonbills in China, confirming open water habitats as being critical throughout the annual cycle, although based on small sample size, gaps in current site safeguard networks for these populations.


Sign in / Sign up

Export Citation Format

Share Document