scholarly journals Multiple Phase Changes in the Mantle Transition Zone Beneath Northeast Asia: Constraints From Teleseismic Reflected and Converted Body Waves

Author(s):  
Benoit Tauzin ◽  
Seongryong Kim ◽  
Juan Carlos Afonso
Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.


2017 ◽  
pp. ggw491 ◽  
Author(s):  
Chuanxu Chen ◽  
Dapeng Zhao ◽  
You Tian ◽  
Shiguo Wu ◽  
Akira Hasegawa ◽  
...  

2012 ◽  
Vol 4 (2) ◽  
pp. 783-821 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attemped, due to the mismatch between the complex and bandlimited data and the (ray-theoretical) modeling methods. Here we present a data processing and modeling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that it is possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modeled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body-wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric earth.


2021 ◽  
Author(s):  
Felix Bissig ◽  
Amir Khan ◽  
Domenico Giardini

<p>The mantle transition zone (MTZ) is bounded by seismic discontinuities at average depths of 410 km and 660 km, which are generally associated with major mantle mineral transformations. A body wave impinging from above on these discontinuities develops a refracted and reflected branch, leading to multiple arrivals of the same wavetype within a short time window. These so-called triplicated body waves are observed at regional epicentral distances (15-30°) and carry information on MTZ structure due to their strong interaction with the 410 km and 660 km discontinuities. Careful data selection and processing as well as the assessment of source parameters are necessary steps in obtaining a high quality triplication data set. In this study, we consider recordings of events in Central America at permanent and transportable USArray stations, which are inverted for mantle structure. Our methodology is based on a joint consideration of mineral physics and seismic data in a probabilistic inversion framework and allows for determination of mantle thermo-chemical and seismic velocity structure. We present constraints on the mantle structure underneath the Gulf of Mexico.</p>


Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 19-24
Author(s):  
Wen-Liang Xu ◽  
Jia-Hui Chen ◽  
Ai-Hua Weng ◽  
Jie Tang ◽  
Feng Wang ◽  
...  

Abstract The geochemistry of Cenozoic intracontinental high-Mg andesites (HMAs) in northeast Asia, together with regional geophysical data, offers an opportunity to explore the genetic relationship between the formation of intracontinental HMAs and subduction of the Pacific plate. Compared with primary HMAs in arcs, Cenozoic intracontinental HMAs in northeast Asia have lower Mg# [100 × Mg/(Mg + Fe2+)] values (53–56) and CaO contents (5.8–6.6 wt%), higher alkali (Na2O + K2O) contents (5.15–6.45 wt%), and enriched Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.7056–0.7059; εNd = −4.9 to −3.4; εHf = −4.7 to −2.6) as well as lower Pb isotope ratios (206Pb/204Pb = 16.76–19.19; 207Pb/204Pb = 15.42–15.45; 208Pb/204Pb = 36.71–37.11). These Cenozoic intracontinental HMAs are similar to Cenozoic potassic basalts in northeast China with respect to their Sr-Nd-Pb-Hf isotopic compositions but have higher SiO2 and Al2O3 contents and lower K2O, MgO, and light rare earth element contents. These features indicate that these Cenozoic intracontinental HMAs originated from the mantle, where recycled ancient sediments and water contributed to partial melting of peridotite. Combined with the presence of a large low-resistivity anomaly derived from the mantle transition zone (MTZ) near these intracontinental HMAs, and their occurrence above the stagnant slab front within the MTZ (at 600 km depth) in northeast Asia, we conclude that the stagnant slab front, with high contents of recycled ancient sediments and water, has controlled the formation of Cenozoic intracontinental HMAs in northeast Asia.


Author(s):  
B. B. Shkursky

Theoretical modeling of regular olivine grains misorientations in mimetic paramorphoses after ringwoodite and wadsleyite, the formation of which during the ascension of matter from the Mantle Transition Zone is expected, has been carried out. The coordinates of the misorientation axes and the misorientation angles, characterizing 10 operations of alignment in the pair intergrowths of olivine grains, eight of which are twins, are calculated. Possible conditions for the formation of mimetic paramorphoses predicted here, and the chances of their persistence are discussed. The calculated orientations are compared with the known twinning laws of olivine.


Sign in / Sign up

Export Citation Format

Share Document