mantle mineral
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenzhong Wang ◽  
Jiachao Liu ◽  
Feng Zhu ◽  
Mingming Li ◽  
Susannah M. Dorfman ◽  
...  

AbstractLarge Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3–10 mol% Fe2O3 system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higher VP/VS ratio than MgSiO3 bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes.



2021 ◽  
Author(s):  
Matteo Desiderio ◽  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer

<p>According to geochemical and geophysical observations, Earth's lower mantle appears to be strikingly heterogeneous in composition. An accurate interpretation of these findings is critical to constrain Earth's bulk composition and long-term evolution. To this end, two main models have gained traction, each reflecting a different style of chemical heterogeneity preservation: the 'marble cake' and 'plum pudding' mantle. In the former, heterogeneity is preserved in the form of narrow streaks of recycled oceanic lithosphere, stretched and stirred throughout the mantle by convection. In the latter, domains of intrinsically strong, primordial material (enriched in the lower-mantle mineral bridgmanite) may resist convective entrainment and survive as coherent blobs in the mid mantle. Microscopic scale processes certainly affect macroscopic properties of mantle materials and thus reverberate on large-scale mantle dynamics. A cross-disciplinary effort is therefore needed to constrain present-day Earth structure, yet countless variables remain to be explored. Among previous geodynamic studies, for instance, only few have attempted to address how the viscosity and density of recycled and primordial materials affect their mutual mixing and interaction in the mantle.</p><p>Here, we apply the finite-volume code <strong>STAGYY</strong> to model thermochemical convection of the mantle in a 2D spherical-annulus geometry. All models are initialized with a lower, primordial layer and an upper, pyrolitic layer (i.e., a mechanical mixture of basalt and harzburgite), as is motivated by magma-ocean solidification studies. We explore the effects of material properties on the style of mantle convection and heterogeneity preservation. These parameters include (i) the intrinsic strength of basalt (viscosity), (ii) the intrinsic density of basalt, and (iii) the intrinsic strength of the primordial material.</p><p>Our preliminary models predict a range of different mantle mixing styles. A 'marble cake'-like regime is observed for low-viscosity primordial material (~30 times weaker than the ambient mantle), with recycled oceanic lithosphere preserved as streaks and thermochemical piles accumulating near the core-mantle boundary. Conversely, 'plum pudding' primordial blobs are also preserved when the primordial material is relatively strong, in addition to the 'marble cake' heterogeneities mentioned above. Most notably, however, the rheology and the density anomaly of basalt affect the appearance of both recycled and primordial heterogeneities. In particular, they control the stability, size and geometry of thermochemical piles, the enhancement of basaltic streaks in the mantle transition zone, and they influence the style of primordial material preservation. These results indicate the important control that the physical properties of mantle constituents exert on the style of mantle convection and mixing over geologic time. Our numerical models offer fresh insights into these processes and may advance our understanding of the composition and structure of Earth's lower mantle.</p>



2021 ◽  
Author(s):  
Brandon VanderBeek ◽  
Miles Bodmer ◽  
Manuele Faccenda

<p>Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic P-wave imaging remains largely ignored. Unmodeled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional and thermal heterogeneities. Here, we present a new parameterization for imaging arbitrarily oriented hexagonal anisotropy using teleseismic P-wave delays. We evaluate our tomography algorithm by reconstructing geodynamic simulations of subduction that include predictions for mantle mineral fabrics. Our synthetic tests demonstrate that accounting for both the dip and azimuth of anisotropy in the inversion is critical to the accurate recovery of both isotropic and anisotropic structure. We then perform anisotropic inversions using data collected across the western United States and offshore Cascadia. Our preliminary models show a clear circular pattern in the azimuth of anisotropy around the southern edge of the Juan de Fuca slab that is remarkably similar to the toroidal flow pattern inferred from SKS splits. We also image dipping anisotropic domains coincident with the descending Juan de Fuca slab. In contrast to prior isotropic tomographic results, the Juan de Fuca slab in our anisotropic model is characterized by more uniform P-wave speeds and is without an obvious slab hole below ~150 km depth. We also find a general decrease in the magnitude of mantle low-velocity zones throughout the model relative to prior studies. These results highlight the sensitivity of teleseismic P-waves to anisotropic structure and the importance of accounting for anisotropic heterogeneity in the imaging of subduction zones.</p>



2021 ◽  
Author(s):  
Felix Bissig ◽  
Amir Khan ◽  
Domenico Giardini

<p>The mantle transition zone (MTZ) is bounded by seismic discontinuities at average depths of 410 km and 660 km, which are generally associated with major mantle mineral transformations. A body wave impinging from above on these discontinuities develops a refracted and reflected branch, leading to multiple arrivals of the same wavetype within a short time window. These so-called triplicated body waves are observed at regional epicentral distances (15-30°) and carry information on MTZ structure due to their strong interaction with the 410 km and 660 km discontinuities. Careful data selection and processing as well as the assessment of source parameters are necessary steps in obtaining a high quality triplication data set. In this study, we consider recordings of events in Central America at permanent and transportable USArray stations, which are inverted for mantle structure. Our methodology is based on a joint consideration of mineral physics and seismic data in a probabilistic inversion framework and allows for determination of mantle thermo-chemical and seismic velocity structure. We present constraints on the mantle structure underneath the Gulf of Mexico.</p>



2021 ◽  
Vol 7 (4) ◽  
pp. eabb4644
Author(s):  
Yuri N. Palyanov ◽  
Yuri M. Borzdov ◽  
Alexander G. Sokol ◽  
Yuliya V. Bataleva ◽  
Igor N. Kupriyanov ◽  
...  

Most natural diamonds are formed in Earth’s lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth’s mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300° to 1600°C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral–forming processes, carbon isotope fractionation, and the global carbon cycle.



2021 ◽  
Vol 7 (1) ◽  
pp. eabd3614
Author(s):  
Brian Chandler ◽  
Joel Bernier ◽  
Mathew Diamond ◽  
Martin Kunz ◽  
Hans-Rudolf Wenk

Understanding dynamics across phase transformations and the spatial distribution of minerals in the lower mantle is crucial for a comprehensive model of the evolution of the Earth’s interior. Using the multigrain crystallography technique (MGC) with synchrotron x-rays at pressures of 30 GPa in a laser-heated diamond anvil cell to study the formation of bridgmanite [(Mg,Fe)SiO3] and ferropericlase [(Mg,Fe)O], we report an interconnected network of a smaller grained ferropericlase, a configuration that has been implicated in slab stagnation and plume deflection in the upper part of the lower mantle. Furthermore, we isolated individual crystal orientations with grain-scale resolution, provide estimates on stress evolutions on the grain scale, and report {110} twinning in an iron-depleted bridgmanite, a mechanism that appears to aid stress relaxation during grain growth and likely contributes to the lack of any appreciable seismic anisotropy in the upper portion of the lower mantle.



2020 ◽  
Vol 242 ◽  
pp. 150
Author(s):  
Ivan YATSENKO ◽  
Sergey SKUBLOV ◽  
Ekaterina LEVASHOVA ◽  
Olga GALANKINA ◽  
Sergey BEKESHA

The article presents the results of studying the rocks of the pyroclastic facies of the Mriya lamproite pipe, located on the Priazovsky block of the Ukrainian shield. In them the rock's mineral composition includes a complex of exotic mineral particles formed under extreme reduction mantle conditions: silicate spherules, particles of native metals and intermetallic alloys, oxygen-free minerals such as diamond, qusongite (WC), and osbornite (TiN). The aim of the research is to establish the genesis of volcaniclastic rocks and to develop ideas of the highly deoxidized mantle mineral association (HRMMA), as well as to conduct an isotopic and geochemical study of zircon. As a result, groups of minerals from different sources are identified in the heavy fraction: HRMMA can be attributed to the juvenile magmatic component of volcaniclastic rocks; a group of minerals and xenoliths that can be interpreted as xenogenic random material associated with mantle nodules destruction (hornblendite, olivinite and dunite xenoliths), intrusive lamproites (tremolite-hornblende) and crystalline basement rocks (zircon, hornblende, epidote, and granitic xenoliths). The studied volcaniclastic rocks can be defined as intrusive pyroclastic facies (tuffisites) formed after the lamproites intrusion. Obviously, the HRMMA components formed under extreme reducing conditions at high temperatures, which are characteristic of the transition core-mantle zone. Thus, we believe that the formation of primary metal-silicate HRMMA melts is associated with the transition zone D".



Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 141 ◽  
Author(s):  
Olga N. Kiseleva ◽  
Evgeniya V. Airiyants ◽  
Dmitriy K. Belyanin ◽  
Sergey M. Zhmodik

In this paper, we present the first detailed study on the chromitites and platinum-group element mineralization (PGM) of the Ulan-Sar’dag ophiolite (USO), located in the Central Asian Fold Belt (East Sayan). Three groups of chrome spinels, differing in their chemical features and physical–chemical parameters, under equilibrium conditions of the mantle mineral association, have been distinguished. The temperature and log oxygen fugacity values are, for the chrome spinels I, from 820 to 920 °C and from (−0.7) to (−1.5); for chrome spinels II, 891 to 1003 °C and (−1.1) to (−4.4); and for chrome spinels III, 738 to 846 °C and (−1.1) to (−4.4), respectively. Chrome spinels I were formed through the interaction of peridotites with mid-ocean ridge basalt (MORB)-type melts, and chrome spinels II were formed through the interaction of peridotites with boninite melts. Chrome spinels III were probably formed through the interaction of andesitic melts with rocks of an overlying mantle wedge. Chromitites demonstrate the fractionated form of the distribution of the platinum-group elements (PGE), which indicates a high degree of partial melting at 20–24% of the mantle source. Two assemblages of PGM have been distinguished: The primary PGE assemblage of Os-Ir-Ru alloys-I, (Os,Ru)S2, and IrAsS, and the secondary PGM assemblage of Os-Ir-Ru alloys-II, Os0, Ru0, RuS2, OsS2, IrAsS, RhNiAs with Ni, Fe, and Cu sulfides. The formation of the secondary phases of PGE occurred upon exposure to a reduced fluid, with a temperature range of 300–700 °C, log sulfur fugacity of (−20), and pressure of 0.5 kbar. We have proposed a scheme for the sequence of the formation and transformation of the PGMs at various stages of the evolution of the Ulan-Sar’dag ophiolite.





Sign in / Sign up

Export Citation Format

Share Document