scholarly journals A Positive‐Definite, WENO‐Limited, High‐Order Finite Volume Solver for 2‐D Transport on the Cubed Sphere Using an ADER Time Discretization

2018 ◽  
Vol 10 (7) ◽  
pp. 1587-1612
Author(s):  
M. R. Norman ◽  
R. D. Nair
2014 ◽  
Vol 7 (3) ◽  
pp. 909-929 ◽  
Author(s):  
J. Thuburn ◽  
C. J. Cotter ◽  
T. Dubos

Abstract. A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.


2015 ◽  
Vol 143 (7) ◽  
pp. 2937-2954 ◽  
Author(s):  
Kiran K. Katta ◽  
Ramachandran D. Nair ◽  
Vinod Kumar

Abstract This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.


2013 ◽  
Vol 6 (4) ◽  
pp. 6867-6925 ◽  
Author(s):  
J. Thuburn ◽  
C. J. Cotter ◽  
T. Dubos

Abstract. A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.


Author(s):  
A. Carpio ◽  
E. Cebrian

Abstract Hypoxy induced angiogenesis processes can be described by coupling an integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the angiogenic factor. We propose high order positivity preserving schemes to approximate the marginal tip density by combining an asymptotic reduction with weighted essentially non oscillatory and strong stability preserving time discretization. We capture soliton-like solutions representing blood vessel formation and spread towards hypoxic regions.


Sign in / Sign up

Export Citation Format

Share Document