strong stability preserving
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Giuseppe Izzo ◽  
Zdzisław Jackiewicz

AbstractWe investigate strong stability preserving (SSP) implicit-explicit (IMEX) methods for partitioned systems of differential equations with stiff and nonstiff subsystems. Conditions for order p and stage order $$q=p$$ q = p are derived, and characterization of SSP IMEX methods is provided following the recent work by Spijker. Stability properties of these methods with respect to the decoupled linear system with a complex parameter, and a coupled linear system with real parameters are also investigated. Examples of methods up to the order $$p=4$$ p = 4 and stage order $$q=p$$ q = p are provided. Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration, and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Junseok Kim ◽  
Hyun Geun Lee

AbstractIn this article, we consider a temporally second-order unconditionally energy stable computational method for the Allen–Cahn (AC) equation with a high-order polynomial free energy potential. By modifying the nonlinear parts in the governing equation, we have a linear convex splitting scheme of the energy for the high-order AC equation. In addition, by combining the linear convex splitting with a strong-stability-preserving implicit–explicit Runge–Kutta (RK) method, the proposed method is linear, temporally second-order accurate, and unconditionally energy stable. Computational tests are performed to demonstrate that the proposed method is accurate, efficient, and energy stable.


Author(s):  
A. Carpio ◽  
E. Cebrian

Abstract Hypoxy induced angiogenesis processes can be described by coupling an integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the angiogenic factor. We propose high order positivity preserving schemes to approximate the marginal tip density by combining an asymptotic reduction with weighted essentially non oscillatory and strong stability preserving time discretization. We capture soliton-like solutions representing blood vessel formation and spread towards hypoxic regions.


2021 ◽  
Vol 36 (2) ◽  
pp. 213-217
Author(s):  
Min Zhu

In this paper, a novel high-order method, Runge-Kutta Sinc (RK-Sinc), is proposed. The RK-Sinc scheme employs the strong stability preserving Runge-Kutta (SSP-RK) algorithm to substitute time derivative and the Sinc function to replace spatial derivates. The computational efficiency, numerical dispersion and convergence of the RK-Sinc algorithm are addressed. The proposed method presents the better numerical dispersion and the faster convergence rate both in time and space domain. It is found that the computational memory of the RK-Sinc is more than two times of the FDTD for the same stencil size. Compared with the conventional FDTD, the new scheme provides more accuracy and great potential in computational electromagnetic field.


Sign in / Sign up

Export Citation Format

Share Document