scholarly journals When There Is No Offset: A Demonstration of Seismic Diffraction Imaging and Depth‐Velocity Model Building in the Southern Aegean Sea

Author(s):  
J. Preine ◽  
B. Schwarz ◽  
A. Bauer ◽  
C. Hübscher
Geophysics ◽  
2021 ◽  
pp. 1-87
Author(s):  
Sooyoon Kim ◽  
Soon Jee Seol ◽  
Joongmoo Byun ◽  
Seokmin Oh

Diffraction images can be used for modeling reservoir heterogeneities at or below the seismic wavelength scale. However, the extraction of diffractions is challenging because their amplitude is weaker than that of overlapping reflections. Recently, deep learning (DL) approaches have been used as a powerful tool for diffraction extraction. Most DL approaches use a classification algorithm that classifies pixels in the seismic data as diffraction, reflection, noise, or diffraction with reflection, and takes whole values for the classified diffraction pixels. Thus, these DL methods cannot extract diffraction energy from pixels for which diffractions are masked by reflections. We proposed a DL-based diffraction extraction method that preserves the amplitude and phase characteristics of diffractions. Through the systematic generation of a training dataset using synthetic modeling based on t-distributed stochastic neighbor embedding (t-SNE) analysis, this technique extracts not only faint diffractions, but also diffraction tails overlapped by strong reflection events. We also demonstrated that the DL model pre-trained with basic synthetic dataset can be applied to seismic field data through transfer learning. Because the diffractions extracted by our method preserve the amplitude and phase, they can be used for velocity model building and high-resolution diffraction imaging.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S47-S55 ◽  
Author(s):  
Parsa Bakhtiari Rad ◽  
Benjamin Schwarz ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Diffraction imaging can lead to high-resolution characterization of small-scale subsurface structures. A key step of diffraction imaging and tomography is diffraction separation and enhancement, especially in the full prestack data volume. We have considered point diffractors and developed a robust and fully data-driven workflow for prestack diffraction separation based on wavefront attributes, which are determined using the common-reflection-surface (CRS) method. In the first of two steps, we apply a zero-offset-based extrapolation operator for prestack diffraction separation, which combines the robustness and stability of the zero-offset CRS processing with enhanced resolution and improved illumination of the finite-offset CRS processing. In the second step, when the finite-offset diffracted events are separated, we apply a diffraction-based time migration velocity model building that provides high-quality diffraction velocity spectra. Applications of the new workflow to 2D/3D complex synthetic data confirm the superiority of prestack diffraction separation over the poststack method as well as the high potential of diffractions for improved time imaging.


2021 ◽  
Author(s):  
Jérome Simon ◽  
Gabriel Fabien-Ouellet ◽  
Erwan Gloaguen ◽  
Ishan Khurjekar ◽  
Mauricio Araya-Polo

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE183-VE194 ◽  
Author(s):  
Junru Jiao ◽  
David R. Lowrey ◽  
John F. Willis ◽  
Ruben D. Martínez

Imaging sediments below salt bodies is challenging because of the inherent difficulty of estimating accurate velocity models. These models can be estimated in a variety of ways with varying degrees of expense and effectiveness. Two methods are commercially viable trade-offs. In the first method, residual-moveout analysis is performed in a layer-stripping mode. The models produced with this method can be used as a first approximation of the subsalt velocity field. A wave-equation migration scanning technique is more suitable for fine-tuning the velocity model below the salt. Both methods can be run as part of a sophisticated interactive velocity interpretation software package that makes velocity interpretation efficient. Performance of these methods has been tested on synthetic and field data examples.


Sign in / Sign up

Export Citation Format

Share Document