scholarly journals Common-reflection-surface-based prestack diffraction separation and imaging

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S47-S55 ◽  
Author(s):  
Parsa Bakhtiari Rad ◽  
Benjamin Schwarz ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Diffraction imaging can lead to high-resolution characterization of small-scale subsurface structures. A key step of diffraction imaging and tomography is diffraction separation and enhancement, especially in the full prestack data volume. We have considered point diffractors and developed a robust and fully data-driven workflow for prestack diffraction separation based on wavefront attributes, which are determined using the common-reflection-surface (CRS) method. In the first of two steps, we apply a zero-offset-based extrapolation operator for prestack diffraction separation, which combines the robustness and stability of the zero-offset CRS processing with enhanced resolution and improved illumination of the finite-offset CRS processing. In the second step, when the finite-offset diffracted events are separated, we apply a diffraction-based time migration velocity model building that provides high-quality diffraction velocity spectra. Applications of the new workflow to 2D/3D complex synthetic data confirm the superiority of prestack diffraction separation over the poststack method as well as the high potential of diffractions for improved time imaging.

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S229-S238 ◽  
Author(s):  
Martina Glöckner ◽  
Sergius Dell ◽  
Benjamin Schwarz ◽  
Claudia Vanelle ◽  
Dirk Gajewski

To obtain an image of the earth’s subsurface, time-imaging methods can be applied because they are reasonably fast, are less sensitive to velocity model errors than depth-imaging methods, and are usually easy to parallelize. A powerful tool for time imaging consists of a series of prestack time migrations and demigrations. We have applied multiparameter stacking techniques to obtain an initial time-migration velocity model. The velocity model building proposed here is based on the kinematic wavefield attributes of the common-reflection surface (CRS) method. A subsequent refinement of the velocities uses a coherence filter that is based on a predetermined threshold, followed by an interpolation and smoothing. Then, we perform a migration deconvolution to obtain the final time-migrated image. The migration deconvolution consists of one iteration of least-squares migration with an estimated Hessian. We estimate the Hessian by nonstationary matching filters, i.e., in a data-driven fashion. The model building uses the framework of the CRS, and the migration deconvolution is fully automated. Therefore, minimal user interaction is required to carry out the velocity model refinement and the image update. We apply the velocity refinement and migration deconvolution approaches to complex synthetic and field data.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA13-WA21 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

Nonhyperbolic moveout analysis plays an increasingly important role in velocity model building because it provides valuable information for anisotropic parameter estimation. However, lateral heterogeneity associated with stratigraphic lenses such as channels and reefs can significantly distort the moveout parameters, even when the structure is relatively simple. We analyze the influence of a low-velocity isotropic lens on nonhyperbolic moveout inversion for horizontally layered VTI (transversely isotropic with a vertical symmetry axis) models. Synthetic tests demonstrate that a lens can cause substantial, laterally varying errors in the normal-moveout velocity [Formula: see text] and the anellipticity parameter [Formula: see text]. The area influenced by the lens can be identified using the residual moveout after the nonhyperbolic moveout correction as well as the dependence of errors in [Formula: see text] and [Formula: see text] on spreadlength. To remove such errors in [Formula: see text] and [Formula: see text], we propose a correction algorithm designed for a lens embedded in a horizontally layered overburden. This algorithm involves estimation of the incidence angle of the ray passing through the lens for each recorded trace. With the assumption that lens-related perturbation of the raypath is negligible, the lens-induced traveltime shifts are computed from the corresponding zero-offset time distortion (i.e., from “pull-up” or “push-down” anomalies). Synthetic tests demonstrate that this algorithm substantially reduces the errors in the effective and interval parameters [Formula: see text] and [Formula: see text]. The corrected traces and reconstructed “background” values of [Formula: see text] and [Formula: see text] are suitable for anisotropic time imaging and producing a high-quality stack.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S355-S364 ◽  
Author(s):  
Jianhang Yin ◽  
Nori Nakata

Diffracted waves contain a great deal of valuable information about small-scale subsurface structure such as faults, pinch-outs, karsts, and fractures, which are closely related to hydrocarbon accumulation and production. Therefore, diffraction separation and imaging with high spatial resolution play an increasingly critical role in seismic exploration. We have applied the geometric-mean reverse time migration (GmRTM) method to diffracted waves for imaging only subsurface diffractors based on the difference of the wave phenomena between diffracted and reflected waves. Numerical tests prove the advantages of this method on diffraction imaging with higher resolution as well as fewer artifacts compared to conventional RTM even when we only have a small number of receivers. Then, we developed a workflow to extract diffraction information using a fully data-driven method, called common-reflection surface (CRS), before we applied GmRTM. Application of this workflow indicates that GmRTM further improves the quality of the image by combining with the diffraction-separation technique CRS in the data domain.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE235-VE241 ◽  
Author(s):  
Juergen Fruehn ◽  
Ian F. Jones ◽  
Victoria Valler ◽  
Pranaya Sangvai ◽  
Ajoy Biswal ◽  
...  

Imaging in deep-water environments poses a specific set of challenges, both in data preconditioning and velocity model building. These challenges include scattered, complex 3D multiples, aliased noise, and low-velocity shallow anomalies associated with channel fills and gas hydrates. We describe an approach to tackling such problems for data from deep water off the east coast of India, concentrating our attention on iterative velocity model building, and more specifically the resolution of near-surface and other velocity anomalies. In the region under investigation, the velocity field is complicated by narrow buried canyons ([Formula: see text] wide) filled with low-velocity sediments, which give rise to severe pull-down effects; possible free-gas accumulation below an extensive gas-hydrate cap, causing dimming of the image below (perhaps as a result of absorption); and thin-channel bodies with low-velocity fill. Hybrid gridded tomography using a conjugate gradient solver (with [Formula: see text] vertical cell size) was applied to resolve small-scale velocity anomalies (with thicknesses of about [Formula: see text]). Manual picking of narrow-channel features was used to define bodies too small for the tomography to resolve. Prestack depth migration, using a velocity model built with a combination of these techniques, could resolve pull-down and other image distortion effects in the final image. The resulting velocity field shows high-resolution detail useful in identifying anomalous geobodies of potential exploration interest.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S93-S101 ◽  
Author(s):  
Andrej Bóna

Standard migration techniques require a velocity model. A new and fast prestack time migration method is presented that does not require a velocity model as an input. The only input is a shot gather, unlike other velocity-independent migrations that also require input of data in other gathers. The output of the presented migration is a time-migrated image and the migration velocity model. The method uses the first and second derivatives of the traveltimes with respect to the location of the receiver. These attributes are estimated by computing the gradient of the amplitude in a shot gather. The assumptions of the approach are a laterally slowly changing velocity and reflectors with small curvatures; the dip of the reflector can be arbitrary. The migration velocity corresponds to the root mean square (rms) velocity for laterally homogeneous media for near offsets. The migration expressions for 2D and 3D cases are derived from a simple geometrical construction considering the image of the source. The strengths and weaknesses of the methods are demonstrated on synthetic data. At last, the applicability of the method is discussed by interpreting the migration velocity in terms of the Taylor expansion of the traveltime around the zero offset.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB191-WB207 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We present a new strategy for efficient wave-equation migration-velocity analysis in complex geological settings. The proposed strategy has two main steps: simulating a new data set using an initial unfocused image and performing wavefield-based tomography using this data set. We demonstrated that the new data set can be synthesized by using generalized Born wavefield modeling for a specific target region where velocities are inaccurate. We also showed that the new data set can be much smaller than the original one because of the target-oriented modeling strategy, but it contains necessary velocity information for successful velocity analysis. These interesting features make this new data set suitable for target-oriented, fast and interactive velocity model-building. We demonstrate the performance of our method on both a synthetic data set and a field data set acquired from the Gulf of Mexico, where we update the subsalt velocity in a target-oriented fashion and obtain a subsalt image with improved continuities, signal-to-noise ratio and flattened angle-domain common-image gathers.


Sign in / Sign up

Export Citation Format

Share Document