scholarly journals Transit‐time and temperature control the spatial patterns of aerobic respiration and denitrification in the riparian zone

Author(s):  
G. E. H. Nogueira ◽  
C. Schmidt ◽  
P. Brunner ◽  
D. Graeber ◽  
J. H. Fleckenstein
Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


1981 ◽  
Vol 26 (8) ◽  
pp. 636-637
Author(s):  
James M. Lipton
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S676-S676
Author(s):  
Masanobu Ibaraki ◽  
Hiroshi Ito ◽  
Eku Shimosegawa ◽  
Hideto Toyoshima ◽  
Keiichi Ishigame ◽  
...  

1986 ◽  
Vol 47 (12) ◽  
pp. 2025-2039 ◽  
Author(s):  
A. Titov ◽  
Yu. Malyshev ◽  
Yu. Rastorguev

1968 ◽  
Vol 07 (02) ◽  
pp. 125-129
Author(s):  
J. Měštan ◽  
V. Aschenbrenner ◽  
A. Michaljanič

SummaryIn patients with acquired and congenital valvular heart disease correlations of the parameters of the radiocardiographic curve (filling time of the right heart, minimal pulmonary transit time, peak-to-peak pulmonary transit time, and the so-called filling time of the left heart) with the mean pulmonary artery pressure and the mean pulmonary “capillary” pressure were studied. Further, a regression equation was determined by means of which the mean pulmonary “capillary” pressure can be predicted.


Sign in / Sign up

Export Citation Format

Share Document