A Comparison of ship drift, drifting buoy, and current meter mooring velocities in the Pacific South Equatorial Current

1991 ◽  
Vol 96 (C1) ◽  
pp. 775-781 ◽  
Author(s):  
M. J. McPhaden ◽  
D. V. Hansen ◽  
P. L. Richardson
2002 ◽  
Vol 32 (9) ◽  
pp. 2492-2508 ◽  
Author(s):  
Tangdong Qu ◽  
Eric J. Lindstrom

Abstract Time-averaged circulation is examined using historical hydrographic data near the Australia and Papua New Guinea coast in the Pacific. By averaging the data along isopycnal surfaces in a 0.5° × 0.5° grid, the authors are able to show many detailed phenomena associated with the narrow western boundary currents, including the vertical structure of the bifurcation latitude of the South Equatorial Current (SEC) and the connection between the Solomon and Coral Seas. The bifurcation latitude of the SEC is found to move southward from about 15°S near the surface to south of 22°S in the intermediate layers. The origin of the Great Barrier Reef Undercurrent (GBRUC) is identified to be at about 22°S. Farther to the north, the GBRUC intensifies underlying the surface East Australian Current, and merges with the North Queensland Current (NQC) at about 15°S. The NQC turns eastward to flow along the Papua New Guinea coast and feeds into the New Guinea Coastal Undercurrent (NGCUC) through the Louisiade Archipelago. Further analysis shows that there is a strong water property connection between the Coral and Solomon Seas, confirming the earlier speculation on the water mass origins of the NGCUC.


2015 ◽  
Vol 45 (6) ◽  
pp. 1757-1770 ◽  
Author(s):  
Zhaohui Chen ◽  
Lixin Wu

AbstractThe seasonal variation of the South Equatorial Current (SEC) bifurcation off the Australian coast in the South Pacific (SP) is investigated with observations and a nonlinear, reduced-gravity, primitive equation model of the upper ocean. The mean SEC bifurcation latitude (SBL) integrated over the upper thermocline is around 17.5°S, almost 2° south of the position predicted by Sverdrup theory. For its seasonal variation, the SBL reaches its southernmost position in June/July and its northernmost position in November/December. The south–north migration of 2.7° is twice as large as its counterpart in the North Pacific. It is found that the large seasonal amplitude of the SBL results from the combined effect of Low-Lat-SP and Non-Low-Lat-SP processes. The Low-Lat-SP process (referred to as the Rossby wave dynamics forced by the wind stress curl over the low-latitude SP) accounts for almost ⅔ of the SBL seasonal variability, and the Non-Low-Lat-SP processes account for ⅓. Both of these processes are responsible for its south–north migration but in different ways. The Low-Lat-SP wind forcing determines the offshore upper-layer thickness (ULT) via Rossby wave propagation, while the Non-Low-Lat-SP wind forcing determines the alongshore ULT via coastal Kelvin wave propagation. A simple bifurcation model is proposed under the framework of linear Rossby wave dynamics. It is found that the seasonal bifurcation latitude is predominantly determined by the spatial pattern of the wind and baroclinic Rossby wave propagation. This model explains the roles of local/remote wind forcing and baroclinic adjustment in the south–north migration and peak seasons of the bifurcation latitude.


Sign in / Sign up

Export Citation Format

Share Document