equatorial undercurrent
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 41)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 9 (10) ◽  
pp. 1090
Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation (GOC) within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of this theory have reduced planetary fluids to warm/cold masses and determined their bulk properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity (PV) is homogenized in moving masses. In a companion paper on the general atmosphere circulation (GAC), this upper bound is seen to reproduce the observed prevailing wind, therefore forsaking discordant explanations of the easterly trade winds and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Since PV homogenization has short-circuited the wind curl, the Sverdrup dynamics does not need to be the sole progenitor of the western intensification, as commonly perceived. Together with GAC, we posit that PV homogenization provides a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring, within the confines of thermal differentiation.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1385-1402
Author(s):  
Gandy Maria Rosales Quintana ◽  
Robert Marsh ◽  
Luis Alfredo Icochea Salas

Abstract. Time-varying sources of upwelling waters off the coast of northern Peru are analyzed in a Lagrangian framework, tracking virtual particles backwards in time for 12 months. Particle trajectories are calculated with temperature, salinity and velocity fields from a hindcast spanning 1988–2007, obtained with an eddy-resolving (1/12∘) global configuration of the Nucleus for European Modelling of the Ocean (NEMO) ocean model. At 30 and 100 m, where coastal upwelling rates exceed 50 m month−1, particles are seeded at monthly intervals in proportion to the upwelling rate. Ensemble maps of particle concentration, age, depth, temperature, salinity and density reveal that a substantial but variable fraction of the particles upwelling off Peru arrives via the Equatorial Undercurrent (EUC). Particles follow the EUC core within the depth range 125–175 m, characterized by temperatures <17 ∘C, salinities in the range 34.9–35.2 and densities of σθ=25.5–26.5. Additional inflows are via two slightly deeper branches further south from the main system, at around ≈3 and ≈8∘ S. Averaged across the hindcast, annual-mean percentages of particles upwelling at 30 m (100 m) associated with the EUC vary from 57.4 % (52 %) at 92∘ W to 19.2 % (17.9 %) at 165∘ W. Considerable interannual variability in these percentages reveals that more of the Peruvian upwelling can be traced back to the EUC during warm events, such as El Niño. In contrast, upwelling waters are of more local origin during cold events such as La Niña. Despite weaker EUC transport during El Niño, relative flattening of the equatorial thermocline brings the EUC upwelling waters much closer to the Peruvian coast than under neutral or La Niña conditions. Annually averaging EUC transport at specific longitudes, a notable negative-to-positive transition is evident during the major El Niño/La Niña events of 1997/99. On short timescales, a degree of longitudinal coherence is evident in EUC transport, with transport anomalies at 160∘ W evident at the Galápagos Islands (92∘ W) around 30–35 d later. It is concluded that the Peruvian upwelling system is subject to a variable EUC influence, on a wide range of timescales, most notably the interannual timescale of El Niño–Southern Oscillation (ENSO). Identifying this variability as a driver of shifts in population and catch data for several key species, during the study period, these new findings might inform sustainable management of commercially important fisheries off northern Peru.


Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of the theory have reduced planetary fluids to warm/cold masses and determined their bulk thermal properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity is homogenized in moving masses. In a companion paper on the atmosphere, this upper bound is seen to reproduce the prevailing wind, forsaking therefore previous discordant explanations of the easterly trade and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Together, we posit that PV homogenization may provide a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring --- within the confine of the thermal differentiation.


Author(s):  
Susanna Michael ◽  
Joseph Resing ◽  
Francois Lacan ◽  
Nathaniel Buck ◽  
Catherine Pradoux ◽  
...  

Author(s):  
David Halpern

AbstractIn 1976, a pilot experiment, called first Equatorial Mooring (EQUA-1), tested an innovative technique for anchoring a taut-line surface mooring at 0°, 150°W where the water depth is 4.5 km. The 36-day deployment contained a wind recorder and fixed-level current meters at 50 and 100 m in the Equatorial Undercurrent (EUC). The following year, in a second pilot experiment, named EQUA-2, a similar mooring was deployed at 0°, 125°W for 99 days. EQUA-2, with current meters at 10, 50, 100, 150 and 200 m, recorded a surge in EUC transport during April 1977 when 3-day averaged eastward current speeds at 50-m depth reached 2 m s‒1. The associated eastward transport per unit meridional width over the 50- to 200-m layer was 190 m2 s‒1. Based on observations recorded in April 1980, the EQUA-2 pulse would correspond to a total EUC transport surge of about 38 Sverdrups and would represent an equatorially trapped first-mode baroclinic Kelvin wave. This paper describes EQUA Project observations and why and how I created the high risk-of-failure opportunity to record pioneering time series measurements at the equator. The enduring legacy of the EQUA Project is the sustained maintenance of in-situ surface wind and upper-ocean current and temperature measurements at numerous sites in the equatorial oceans, starting in the Pacific to improve forecasts of the El Niño and La Niña phenomenon. For example, the 40-year records of surface wind and upper-ocean current and temperature measurements at 0°, 110°W and 0°, 140°W are some of oceanography’s longest time series recorded far from land.


2021 ◽  
Author(s):  
Erika F Neave ◽  
Harvey Seim ◽  
Scott Gifford ◽  
Olivia Torano ◽  
Zackary I Johnson ◽  
...  

The Galapagos Archipelago lies within the eastern equatorial Pacific Ocean at the convergence of major ocean currents that are subject to changes in circulation. The nutrient-rich Equatorial Undercurrent upwells from the west onto the Galapagos platform, stimulating primary production, but this source of deep water weakens during El Nino events. From measurements collected on repeat cruises, the 2015/16 El Nino was associated with declines in phytoplankton biomass at most sites throughout the archipelago and reduced utilization of nitrate, particularly in large-sized phytoplankton in the western region. Protistan assemblages were identified by sequencing the V4 region of the 18S rRNA gene. Dinoflagellates, chlorophytes, and diatoms dominated most sites. Shifts in dinoflagellate communities were most apparent between the years; parasitic dinoflagellates, Syndiniales, were highly detected during the El Nino (2015) while the dinoflagellate genus, Gyrodinium dominated many sites during the neutral period (2016). Variations in protistan communities were most strongly correlated with changes in subthermocline water density. These findings indicate that marine protistan communities in this region are regimented by deep water mass sources and thus could be profoundly affected by altered ocean circulation.


2021 ◽  
Vol 51 (5) ◽  
pp. 1575-1593
Author(s):  
D. A. Cherian ◽  
D. B. Whitt ◽  
R. M. Holmes ◽  
R.-C. Lien ◽  
S. D. Bachman ◽  
...  

AbstractThe equatorial Pacific cold tongue is a site of large heat absorption by the ocean. This heat uptake is enhanced by a daily cycle of shear turbulence beneath the mixed layer—“deep-cycle turbulence”—that removes heat from the sea surface and deposits it in the upper flank of the Equatorial Undercurrent. Deep-cycle turbulence results when turbulence is triggered daily in sheared and stratified flow that is marginally stable (gradient Richardson number Ri ≈ 0.25). Deep-cycle turbulence has been observed on numerous occasions in the cold tongue at 0°, 140°W, and may be modulated by tropical instability waves (TIWs). Here we use a primitive equation regional simulation of the cold tongue to show that deep-cycle turbulence may also occur off the equator within TIW cold cusps where the flow is marginally stable. In the cold cusp, preexisting equatorial zonal shear uz is enhanced by horizontal vortex stretching near the equator, and subsequently modified by horizontal vortex tilting terms to generate meridional shear υz off of the equator. Parameterized turbulence in the sheared flow of the cold cusp is triggered daily by the descent of the surface mixing layer associated with the weakening of the stabilizing surface buoyancy flux in the afternoon. Observational evidence for off-equatorial deep-cycle turbulence is restricted to a few CTD casts, which, when combined with shear from shipboard ADCP data, suggest the presence of marginally stable flow in TIW cold cusps. This study motivates further observational campaigns to characterize the modulation of deep-cycle turbulence by TIWs both on and off the equator.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alex Costa da Silva ◽  
Alexis Chaigneau ◽  
Alina N. Dossa ◽  
Gerard Eldin ◽  
Moacyr Araujo ◽  
...  

Using current, hydrographic and satellite observations collected off Northeast Brazil around the Fernando de Noronha Archipelago and Rocas Atoll during two oceanographic cruises (spring 2015 and fall 2017), we investigated the general oceanic circulation and its modifications induced by the islands. In spring 2015, the area was characterized by lower SST (26.6°C) and deep mixed-layer (∼90 m). At this depth, a strong current shear was observed between the central branch of the eastward flowing near-surface South Equatorial Current and the westward flowing South Equatorial Undercurrent. In contrast, in fall 2017, SST was higher (∼28.8°C) and the mixed-layer shallower (∼50 m). The shear between the central South Equatorial Current and the South Equatorial Undercurrent was weaker during this period. Interestingly, no oxygen-rich water from the south (retroflection of the North Brazil undercurrent) was observed in the region in fall 2017. In contrast, we revealed the presence of an oxygen-rich water entrained by the South Equatorial Undercurrent reaching Rocas Atoll in spring 2015. Beside these global patterns, island wake effects were noted. The presence of islands, in particular Fernando de Noronha, strongly perturbs central South Equatorial Current and South Equatorial Undercurrent features, with an upstream core splitting and a reorganization of single current core structures downstream of the islands. Near islands, flow disturbances impact the thermohaline structure and biogeochemistry, with a negative anomaly in temperature (−1.3°C) and salinity (−0.15) between 200 and 400 m depth in the southeast side of Fernando Noronha (station 5), where the fluorescence peak (&gt;1.0 mg m–3) was shallower than at other stations located around Fernando de Noronha, reinforcing the influence of flow-topography. Satellite maps of sea-surface temperature and chlorophyll-a confirmed the presence of several submesoscale features in the study region. Altimetry data suggested the presence of a cyclonic mesoscale eddy around Rocas Atoll in spring 2015. A cyclonic vortex (radius of 28 km) was actually observed in subsurface (150–350 m depth) southeast of Rocas Atoll. This vortex was associated with topographically induced South Equatorial Undercurrent flow separation. These features are likely key processes providing an enrichment from the subsurface to the euphotic layer near islands, supplying local productivity.


2021 ◽  
Author(s):  
Peter Brandt ◽  
Johannes Hahn ◽  
Sunke Schmidtko ◽  
Franz Philip Tuchen ◽  
Robert Kopte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document