Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion

1994 ◽  
Vol 99 (B3) ◽  
pp. 4715-4734 ◽  
Author(s):  
T. A. Minshull ◽  
S. C. Singh ◽  
G. K. Westbrook
Geophysics ◽  
2021 ◽  
pp. 1-20
Author(s):  
Xin Zhang ◽  
Andrew Curtis

Seismic full-waveform inversion (FWI) uses full seismic records to estimate the subsurface velocity structure. This requires a highly nonlinear and nonunique inverse problem to be solved, so Bayesian methods have been used to quantify uncertainties in the solution. Variational Bayesian inference uses optimization to provide solutions efficiently. However, previously the method has only been applied to a transmission FWI problem, and with strong prior information imposed on the velocity such as is never available in practice. We show that the method works well in a seismic reflection setting, and with realistically weak prior information, representing the type of problem that occurs in reality. We conclude that the method can produce high-resolution images and reliable uncertainties using data from standard reflection seismic acquisition geometry, realistic nonlinearity, and practically achievable prior information.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document