Magnetic Anomalies in the West Philippine Basin

Author(s):  
Keith E. Louden
2016 ◽  
Vol 35 (2) ◽  
pp. 431-443 ◽  
Author(s):  
Linnan Shen ◽  
Min Chen ◽  
Binbin Lan ◽  
Hongshuai Qi ◽  
Aimei Zhang ◽  
...  

2016 ◽  
Author(s):  
John Milsom ◽  
Phil Roach ◽  
Chris Toland ◽  
Don Riaroh ◽  
Chris Budden ◽  
...  

ABSTRACT As part of an ongoing exploration effort, approximately 4000 line-km of seismic data have recently been acquired and interpreted within the Comoros Exclusive Economic Zone (EEZ). Magnetic and gravity values were recorded along the seismic lines and have been integrated with pre-existing regional data. The combined data sets provide new constraints on the nature of the crust beneath the West Somali Basin (WSB), which was created when Africa broke away from Gondwanaland and began to move north. Despite the absence of clear sea-floor spreading magnetic anomalies or gravity anomalies defining a fracture zone pattern, the crust beneath the WSB has been generally assumed to be oceanic, based largely on regional reconstructions. However, inappropriate use of regional magnetic data has led to conclusions being drawn that are not supported by evidence. The identification of the exact location of the continent-ocean boundary (COB) is less simple than would at first sight appear and, in particular, recent studies have cast doubt on a direct correlation between the COB and the Davie Fracture Zone (DFZ). The new high-quality reflection seismic data have imaged fault patterns east of the DFZ more consistent with extended continental crust, and the accompanying gravity and magnetic surveys have shown that the crust in this area is considerably thicker than normal oceanic and that linear magnetic anomalies typical of sea-floor spreading are absent. Rifting in the basin was probably initiated in Karoo times but the generation of new oceanic crust may have been delayed until about 154 Ma, when there was a switch in extension direction from NW-SE to N-S. From then until about 120 Ma relative movement between Africa and Madagascar was accommodated by extension in the West Somali and Mozambique basins and transform motion along the DFZ that linked them. A new understanding of the WSB can be achieved by taking note of newly-emerging concepts and new data from adjacent areas. The better-studied Mozambique Basin, where comprehensive recent surveys have revealed an unexpectedly complex spreading history, may provide important analogues for some stages in WSB evolution. At the same time the importance of wide continent-ocean transition zones marked by the presence of hyper-extended continental crust has become widely recognised. We make use of these new insights in explaining the anomalous results from the southern WSB and in assessing the prospectivity of the Comoros EEZ.


2014 ◽  
Vol 66 (1) ◽  
pp. 83 ◽  
Author(s):  
Tomohiro Sasaki ◽  
Toshitsugu Yamazaki ◽  
Osamu Ishizuka

1985 ◽  
Vol 22 (5) ◽  
pp. 686-703 ◽  
Author(s):  
L. M. Parson ◽  
D. G. Masson ◽  
C. D. Pelton ◽  
A. C. Grant

The seismic stratigraphy of the eastern Grand Banks continental margin is examined, and a five-fold division of the sedimentary sequence overlying basement is proposed. Oceanic basement of Cretaceous age underlies the eastern part of the study area; to the west, continental basement ranging in age from Late Precambrian to ?Jurassic underlies the Grand Banks. The sediment units, ranging in age from Early Cretaceous to Recent, have been dated by extrapolation of both commercial and DSDP drilling results from the Grand Banks and from the formerly conjugate Iberian margin. Identification of oceanic magnetic anomalies in the Newfoundland Basin agrees with the proposed age of the two oldest, Early Cretaceous units.


Sign in / Sign up

Export Citation Format

Share Document