ocean bottom seismometers
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masanao Shinohara ◽  
Shin’ichi Sakai ◽  
Tomomi Okada ◽  
Hiroshi Sato ◽  
Yusuke Yamashita ◽  
...  

AbstractAn earthquake with a magnitude of 6.7 occurred in the Japan Sea off Yamagata on June 18, 2019. The mainshock had a source mechanism of reverse-fault type with a compression axis of WNW–ESE direction. Since the source area is positioned in a marine area, seafloor seismic observation is indispensable for obtaining the precise distribution of the aftershocks. The source area has a water depth of less than 100 m, and fishing activity is high. It is difficult to perform aftershock observation using ordinary free-fall pop-up type ocean bottom seismometers (OBSs). We developed a simple anchored-buoy type OBS for shallow water depths and performed the seafloor observation using this. The seafloor seismic unit had three-component seismometers and a hydrophone. Two orthogonal tiltmeters and an azimuth meter monitored the attitude of the package. For seismic observation at shallow water depth, we concluded that an anchored-buoy system would have the advantage of avoiding accidents. Our anchored-buoy OBS was based on a system used in fisheries. We deployed three anchored-buoy OBSs in the source region where the water depth was approximately 80 m on July 5, 2019, and two of the OBSs were recovered on July 13, 2019. Temporary land seismic stations with a three-component seismometer were also installed. The arrival times of P- and S-waves were read from the records of the OBSs and land stations, and we located hypocenters with correction for travel time. A preliminary location was performed using absolute travel time and final hypocenters were obtained using the double-difference method. The aftershocks were distributed at a depth range of 2.5 km to 10 km and along a plane dipping to the southeast. The plane formed by the aftershocks is consistent with the focal mechanism of the mainshock. The activity region of the aftershocks was positioned in the upper part of the upper crust. Focal mechanisms were estimated using the polarity of the first arrivals. Although many aftershocks had a reverse-fault focal mechanism similar to the focal solution of the mainshock, normal-fault type and strike–slip fault type focal mechanisms were also estimated. Graphical Abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260273
Author(s):  
William S. D. Wilcock ◽  
Rose S. Hilmo

Passive acoustic monitoring is an important tool for studying marine mammals. Ocean bottom seismometer networks provide data sets of opportunity for studying blue whales (Balaenoptera musculus) which vocalize extensively at seismic frequencies. We describe methods to localize calls and obtain tracks using the B call of northeast Pacific blue whale recorded by a large network of widely spaced ocean bottom seismometers off the coast of the Pacific Northwest. The first harmonic of the B call at ~15 Hz is detected using spectrogram cross-correlation. The seasonality of calls, inferred from a dataset of calls identified by an analyst, is used to estimate the probability that detections are true positives as a function of the strength of the detection. Because the spacing of seismometers reaches 70 km, faint detections with a significant probability of being false positives must be considered in multi-station localizations. Calls are located by maximizing a likelihood function which considers each strong detection in turn as the earliest arrival time and seeks to fit the times of detections that follow within a feasible time and distance window. An alternative procedure seeks solutions based on the detections that maximize their sum after weighting by detection strength and proximity. Both approaches lead to many spurious solutions that can mix detections from different B calls and include false detections including misidentified A calls. Tracks that are reliable can be obtained iteratively by assigning detections to localizations that are grouped in space and time, and requiring groups of at least 20 locations. Smooth paths are fit to tracks by including constraints that minimize changes in speed and direction while fitting the locations to their uncertainties or applying the double difference relocation method. The reliability of localizations for future experiments might be improved by increasing sampling rates and detecting harmonics of the B call.


2021 ◽  
Vol 9 ◽  
Author(s):  
Francisco Javier Núñez-Cornú ◽  
Diego Córdoba Barba ◽  
William Bandy ◽  
Juan José Dañobeitia ◽  
José Edgar Alarcón Salazar ◽  
...  

The geodynamic complexity in the western Mexican margin is controlled by the multiple interactions between the Rivera, Pacific, Cocos, and North American plates, as evidenced by a high seismicity rate, most of whose hypocenters are poorly located. To mitigate this uncertainty with the aim of improving these hypocentral locations, we undertook the TsuJal Project, a passive seafloor seismic project conducted from April to November 2016. In addition to the Jalisco Seismic Network, 10 LCHEAPO 2000 Ocean Bottom Seismometers (OBSs) were deployed by the BO El Puma in a seafloor array from the Islas Marías Archipelago (Nayarit) to the offshore contact between the states of Colima and Michoacan. We located 445 earthquakes in four or more OBSs within the deployed array. Most of these earthquakes occurred in the contact region of the Rivera, Pacific, and Cocos plates, and a first analysis suggests the existence of three seismogenic zones (West, Center, and East) along the Rivera Transform fault that can be correlated with its morphological expression throughout the three seismogenic zones. The seismicity estimates that the Moho discontinuity is located at 10 km depth and supports earlier works regarding the West zone earthquake distribution. Subcrustal seismicity in the Central zone suggests that the Intra-Transform Spreading Basin domain is an ultra-low spreading ridge. A seismic swarm occurred during May and June 2016 between the eastern tip of the Paleo-Rivera Transform fault and the northern tip of the East Pacific Rise-Pacific Cocos Segment, illuminating some unidentified tectonic feature.


Author(s):  
Shinji Yoneshima ◽  
Kimihiro Mochizuki

ABSTRACT An efficient event-location workflow is highly desired to analyze large numbers of local earthquakes recorded by ocean-bottom seismometers (OBSs) in subduction zones. The present study proposes a migration-based event-location approach for evaluating OBS records to examine local subduction-zone earthquakes. This approach can significantly reduce the amount of manual time picks compared with conventional methods. The event-location workflow was designed to detect arrival onsets of both P and S phases. Synthetic tests have shown that the proposed migration-based event-location method is robust against different types of noise, such as environmental noise and local spike noise. This workflow was then applied to real OBS data in the off-Ibaraki region at the southern end of the Japan trench. The results show that this approach is applicable to real data from subduction-zone events: It gives reasonable agreement with manual time picks for both P and S waves and reasonable error bars, and it demonstrates a clear down-dip trend of seismicity. The results also show fair agreement with event distributions from previous studies of the off-Ibaraki region. This proposed workflow can be used to examine the seismicity of local earthquakes around the subduction zone using OBSs. This approach is especially effective when the seismicity is high and/or in cases in which long-term OBS monitoring has recorded a large number of events.


Oceanography ◽  
2021 ◽  
Vol 34 (3) ◽  
Author(s):  
Alexandra Chava ◽  
◽  
Anna Gebruk ◽  
Glafira Kolbasova ◽  
Artem Krylov ◽  
...  

Biofouling of artificial substrates is a well-known phenomenon that can negatively impact offshore industry operations as well as data collection in the ocean. Fouling communities worldwide have mostly been studied within the top 50 m of the ocean surface, while biofouling below this depth remains largely underreported. Existing methods used to study biofouling are labor intensive and expensive when applied to the deep sea. Here, we propose a simple and cost-effective modification of traditional methods for studying biofouling by mounting test plates on autonomous seafloor equipment and preserving them in ethanol upon retrieval for transport to the laboratory. This method can greatly advance our understanding of biofouling processes in the deeper ocean, including fouling community biodiversity, recruitment, and seasonality. We present two case studies from the Laptev Sea and the Sea of Okhotsk in support of this method. In the first study, we looked at fouling communities on the surfaces of ocean-bottom seismometers deployed for one year in the 36–350 m depth range. In the second study, we tested metal and plexiglass (poly(methyl methacrylate) plates mounted on autonomous bottom stations and found evidence of both micro- and macrofouling after three months of deployment. Our results demonstrate that various autonomous seafloor equipment can be used as supporting platforms for biofouling studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Laura Beranzoli ◽  
Andrea Billi ◽  
Alessandro Bosman ◽  
...  

Seismological data recorded in the Ionian Sea by a network of seven Ocean Bottom Seismometers (OBSs) during the 2017–2018 SEISMOFAULTS experiment provides a close-up view of seismogenic structures that are potential sources of medium-high magnitude earthquakes. The high-quality signal-to-noise ratio waveforms are observed for earthquakes at different scales: teleseismic, regional, and local earthquakes as well as single station earthquakes and small crack events. In this work, we focus on two different types of recording: 1) local earthquakes and 2) Short Duration Events (SDE) associated to micro-fracturing processes. During the SEISMOFAULTS experiment, 133 local earthquakes were recorded by both OBSs and land stations (local magnitude ranging between 0.9 and 3.8), while a group of local earthquakes (76), due to their low magnitude, were recorded only by the OBS network. We relocated 133 earthquakes by integrating onshore and offshore travel times and obtaining a significant improvement in accuracy, particularly for the offshore events. Moreover, the higher signal-to-noise ratio of the OBS network revealed a significant seismicity not detected onshore, which shed new light on the location and kinematics of seismogenic structures in the Calabrian Arc accretionary prism and associated to the subduction of the Ionian lithosphere beneath the Apennines. Other signals recorded only by the OBS network include a high number of Short Duration Events (SDE). The different waveforms of SDEs at two groups of OBSs and the close correlation between the occurrence of events recorded at single stations and SDEs suggest an endogenous fluid venting from mud volcanoes and active fault traces. Results from the analysis of seismological data collected during the SEISMOFAULTS experiment confirm the necessity and potential of marine studies with OBSs, particularly in those geologically active areas of the Mediterranean Sea prone to high seismic risk.


Author(s):  
Masanao Shinohara ◽  
Tomoaki Yamada ◽  
Hajime Shiobara ◽  
Yusuke Yamashita

Abstract Studies of very-low-frequency earthquakes and low-frequency tremors (slow earthquakes) in the shallow region of plate boundaries need seafloor broadband seismic observations. Because it is expected that seafloor spatially high-density monitoring requires numerous broadband sensors for slow earthquakes near trenches, we have developed a long-term compact broadband ocean-bottom seismometer (CBBOBS) by upgrading the long-term short-period ocean-bottom seismometer that has seismic sensors with a natural frequency of 1 Hz and is being mainly used for observation of microearthquakes. Because many long-term ocean-bottom seismometers with short-period sensors are available, we can increase the number of broadband seafloor sensors at a low cost. A short-period seismometer is exchanged for a compact broadband seismometer with a period of 20 or 120 s. Because the ocean-bottom seismometers are installed by free fall, we have no attitude control during an installation. Therefore, we have developed a new leveling system for compact broadband seismic sensors. This new leveling system keeps the same dimensions as the conventional leveling system for 1 Hz seismometers so that the broadband seismic sensor can be installed conveniently. Tolerance for leveling is less than 1°. A tilt of up to 20° is allowed for the leveling operation. A microprocessor controls the leveling procedure. Some of the newly developed ocean-bottom seismometers were deployed in the western Nankai trough, where slow earthquakes frequently occur. The data from the ocean-bottom seismometers on the seafloor were evaluated, and we confirmed that the long-term CBBOBS is suitable for observation of slow earthquakes. The developed ocean-bottom seismometer is also available for submarine volcanic observation and broadband seafloor observation to estimate deep seismic structures.


2021 ◽  
Vol 57 (3) ◽  
pp. 339-352
Author(s):  
Ji-won Ko ◽  
Hitoshi Kawakatsu ◽  
Hajime Shiobara ◽  
Takehi Isse ◽  
Nozomu Takeuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document