Latitudinal distribution of solar wind velocity and its relation to solar EUV corona

1974 ◽  
Vol 79 (25) ◽  
pp. 3841-3843 ◽  
Author(s):  
T. Watanabe ◽  
K. Shibasaki ◽  
T. Kakinuma
2009 ◽  
Vol 27 (5) ◽  
pp. 1909-1914 ◽  
Author(s):  
A. Yoshida

Abstract. Physical meaning of the equinoctial effect for semi-annual variation in geomagnetic activity is investigated based on the three-hourly am index and solar wind parameters. When the z component of the interplanetary magnetic field (IMF) in geocentric solar magnetospheric (GSM) coordinates is southward, am indices are well correlated with BsVx2, where Bs is the southward component of the IMF and Vx is the solar wind velocity in the sun-earth direction. The am-BsVx2 relationship, however, depends on the range of Vx2: the am in higher ranges of Vx2 tends to be larger than am in lower ranges of Vx2 for the same value of BsVx2 for both equinoctial and solstitial epochs. Using the data sets of the same Vx2 range, it is shown that distribution of points in the am-BsVx2 diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVx2 bin in solstitial epochs are closely consistent with those in equinoctial epochs, if Vx2 for each point at solstices are reduced to Vx2sin2 (Ψ) where Ψ is the geomagnetic colatitude of the sub-solar point. Further, it is shown that monthly averages of the am index in the long period is well correlated with the values of sin2(ψ) for the middle day of each month. These findings indicate that the factor that contributes to the generation of geomagnetic disturbance is not the velocity of the solar wind, but the component of the solar wind velocity perpendicular to the dipole axis of the geomagnetic field. The magnitude of the perpendicular velocity component varies semi-annually even if the solar wind velocity remains constant, which is considered to be the long-missed key factor causing the equinoctial effect.


Solar Physics ◽  
2008 ◽  
Vol 250 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Bingxian Luo ◽  
Qiuzhen Zhong ◽  
Siqing Liu ◽  
Jiancun Gong

2021 ◽  
Author(s):  
Konrad Steinvall ◽  
Yuri Khotyaintsev ◽  
Giulia Cozzani ◽  
Andris Vaivads ◽  
Christopher Owen ◽  
...  

<p>Solar wind current sheets have been extensively studied at 1 AU. The recent advent of Parker Solar Probe and Solar Orbiter (SolO) has enabled us to study these structures at a range of heliocentric distances.</p><p>We present SolO observations of current sheets in the solar wind at heliocentric distances between 0.55 and 0.85 AU, some of which show signatures of ongoing magnetic reconnection. We develop a method to find the deHoffman-Teller frame which minimizes the Y-component (the component tangential to the spacecraft orbit) of the electric field. Using the electric field measurements from RPW and magnetic field measurements from MAG, we use our method to determine the deHoffman-Teller frame of solar wind current sheets. The same method can also be used on the Alfvénic turbulence and structures found in the solar wind to obtain a measure of the solar wind velocity.</p><p>Our preliminary results show a good agreement between our modified deHoffmann-Teller analysis based on the single component E-field, and the conventional deHoffman-Teller analysis based on 3D plasma velocity measurements from PAS. This opens up the possibility to use the RPW and MAG data to obtain an estimate of the solar wind velocity when particle data is unavailable.</p>


Author(s):  
M. Kojima ◽  
K. Fujiki ◽  
T. Ohmi ◽  
M. Tokumaru ◽  
A. Yokobe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document