interplanetary magnetic field
Recently Published Documents


TOTAL DOCUMENTS

1206
(FIVE YEARS 114)

H-INDEX

82
(FIVE YEARS 4)

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masaki N. Nishino ◽  
Yoshiya Kasahara ◽  
Yuki Harada ◽  
Yoshifumi Saito ◽  
Hideo Tsunakawa ◽  
...  

AbstractWave–particle interactions are fundamental processes in space plasma, and some plasma waves, including electrostatic solitary waves (ESWs), are recognised as broadband noises (BBNs) in the electric field spectral data. Spacecraft observations in recent decades have detected BBNs around the Moon, but the generation mechanism of the BBNs is not fully understood. Here, we study a wake boundary traversal with BBNs observed by Kaguya, which includes an ESW event previously reported by Hashimoto et al. Geophys Res Lett 37:L19204 10.1029/2010GL044529 (2010). Focusing on the relation between BBNs and electron pitch-angle distribution functions, we show that upward electron beams from the nightside lunar surface are effective for the generation of BBNs, in contrast to the original interpretation by Hashimoto et al. Geophys Res Lett 37:L19204 10.1029/2010GL044529 (2010) that high-energy electrons accelerated by strong ambipolar electric fields excite ESWs in the region far from the Moon. When the BBNs were observed by the Kaguya spacecraft in the wake boundary, the spacecraft’s location was magnetically connected to the nightside lunar surface, and bi-streaming electron distributions of downward-going solar wind strahl component and upward-going field-aligned beams (at $$\sim$$ ∼ 124 eV) were detected. The interplanetary magnetic field was dominated by a positive $$B_Z$$ B Z (i.e. the northward component), and strahl electrons travelled in the antiparallel direction to the interplanetary magnetic field (i.e. southward), which enabled the strahl electrons to precipitate onto the nightside lunar surface directly. The incident solar wind electrons cause negative charging of the nightside lunar surface, which generates downward electric fields that accelerate electrons from the nightside surface toward higher altitudes along the magnetic field. The bidirectional electron distribution is not a sufficient condition for the BBN generation, and the distribution of upward electron beams seems to be correlated with the BBNs. Ambipolar electric fields in the wake boundary should also contribute to the electron acceleration toward higher altitudes and further intrusion of the solar wind ions into the deeper wake. We suggest that solar wind ion intrusion into the wake boundary is also an important factor that controls the BBN generation by facilitating the influx of solar wind electrons there. Graphical Abstract


2021 ◽  
Vol 921 (2) ◽  
pp. 139
Author(s):  
Yun Li ◽  
Haoyu Lu ◽  
Jinbin Cao ◽  
Shibang Li ◽  
Christian Mazelle ◽  
...  

Abstract Without the intrinsic magnetic field, the solar wind interaction with Mars can be significantly different from the interaction with Earth and other magnetized planets. In this paper, we investigate how a global configuration of the magnetic structures, consisting of the bow shock, the induced magnetosphere, and the magnetotail, is modulated by the interplanetary magnetic field (IMF) orientation. A 3D multispecies numerical model is established to simulate the interaction of solar wind with Mars under different IMF directions. The results show that the shock size including the subsolar distance and the terminator radius increases with Parker spiral angle, as is the same case with the magnetotail radius. The location and shape of the polarity reversal layer and inverse polarity reversal layer in the induced magnetotail are displaced to the y < 0 sector for a nonzero flow-aligned IMF component, consistent with previous analytical solutions and observations. The responses of the Martian global magnetic configuration to the different IMF directions suggest that the external magnetic field plays an important role in the solar wind interaction with unmagnetized planets.


Author(s):  
Veronica A. Wang ◽  
Carolina L. Zilli Vieira ◽  
Eric Garshick ◽  
Joel D. Schwartz ◽  
Michael S. Garshick ◽  
...  

Background Since solar activity and related geomagnetic disturbances modulate autonomic nervous system activity, we hypothesized that these events would be associated with blood pressure (BP). Methods and Results We studied 675 elderly men from the Normative Aging Study (Boston, MA) with 1949 BP measurements between 2000 and 2017. Mixed‐effects regression models were used to investigate the association of average 1‐day (ie, day of BP measurement) to 28‐day interplanetary magnetic field intensity, sunspot number, and a dichotomized measure of global geomagnetic activity (K p index) in 4‐day increments with diastolic and systolic BP. We adjusted for meteorological conditions and other covariates associated with BP, and in additional models adjusted for ambient air pollutants (particulate matter with an aerodynamic diameter ≤2.5 µm, black carbon, and particle number) and ambient particle radioactivity. There were positive associations between interplanetary magnetic field, sunspot number, and K p index and BP that were greatest with these exposures averaged over 16 through 28 days before BP measurement. An interquartile range increase of 16‐day interplanetary magnetic field and sunspot number and higher K p index were associated with a 2.5 (95% CI, 1.7‒3.2), 2.8 (95% CI, 2.1‒3.4), and 1.7 (95% CI, 0.8‒2.5) mm Hg increase, respectively, for diastolic BP as well as a 2.1 (95% CI, 0.7‒3.6), 2.7 (95% CI, 1.5‒4.0), and 0.4 (95% CI, −1.2 to 2.1) mm Hg increase, respectively, for systolic BP. Associations remained after adjustment for ambient air pollutants and ambient particle radioactivity. Conclusions Solar activity and solar‐driven geomagnetic disturbances were positively associated with BP, suggesting that these natural phenomena influence BP in elderly men.


2021 ◽  
Vol 919 (2) ◽  
pp. L27
Author(s):  
Sohom Roy ◽  
R. Chhiber ◽  
S. Dasso ◽  
M. E. Ruiz ◽  
W. H. Matthaeus

Sign in / Sign up

Export Citation Format

Share Document