scholarly journals Transition probabilities and Franck-Condon factors for the second negative band system of O2+

1990 ◽  
Vol 95 (A2) ◽  
pp. 1119 ◽  
Author(s):  
J. L. Fox ◽  
A. Dalgarno
1979 ◽  
Vol 57 (8) ◽  
pp. 1178-1184 ◽  
Author(s):  
M. L. Sink ◽  
A. D. Bandrauk

Ab initio Cl calculations of the transition moment for the B′2Σ+–X2Σ+ transition in MgH are reported. Theoretical values for the Franck–Condon factors, band strengths, band oscillator strengths, and transition probabilities have been computed for MgH and MgD. An analysis of our results for this system predicts many bands to be observable which have not yet been identified. Dipole moment functions and vibrationally averaged dipole moments are given for the X2Σ+, A2Π, and B′2Σ+ electronic states.


1993 ◽  
Vol 58 (7) ◽  
pp. 1491-1494 ◽  
Author(s):  
Narayanan Rajamanickam ◽  
Thangamariappan Murali ◽  
Thangasamy Sakthivel ◽  
Manuel Fernandez Gomez ◽  
Juan Jesus Lopez Gonzalez

The Franck-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by a numerical integration procedure for the bands of the a3Π1-X1Σ+ system of the InH molecule using a suitable potential.


2005 ◽  
Vol 04 (01) ◽  
pp. 225-245 ◽  
Author(s):  
IKUO TOKUE ◽  
KATSUYOSHI YAMASAKI ◽  
SATOSHI MINAMINO ◽  
SHINKOH NANBU

To elucidate the ionization dynamics, in particular the vibrational distribution, of H 2 O +(Ã) produced by photoionization and the Penning ionization of H 2 O and D 2 O with He *(2 3S) atoms, Franck–Condon factors (FCFs) were given for the [Formula: see text] ionization, and the transition probabilities were presented for the [Formula: see text] emission. The FCFs were obtained by quantum vibrational calculations using the three-dimensional potential energy surfaces (PESs) of [Formula: see text] and [Formula: see text] electronic states. The global PESs were determined by the multi-reference configuration interaction calculations with the Davidson correction and the interpolant moving least squares method combined with the Shepard interpolation. The obtained FCFs exhibit that the [Formula: see text] state primarily populates the vibrational ground state, as its equilibrium geometry is almost equal to that of [Formula: see text], while the bending mode (ν2) is strongly enhanced for the H 2 O +(Ã) state; the maximums in the population of H 2 O + and D 2 O + are approximately v2 = 11–12 and 15–17, respectively. These results are consistent with the distributions observed by photoelectron spectroscopy. Transition probabilities for the [Formula: see text] system of H 2 O + and D 2 O + show that the bending progressions consist primarily of the [Formula: see text] emission, with combination bands from the (1, v′2 = 4–8, 0) level being next most important.


2008 ◽  
Vol 73 (1) ◽  
pp. 65-71
Author(s):  
Sri Ramachandran ◽  
V. Raja ◽  
N. Rajamanickam

Franck-Condon factors and r-centroids, which are very closely related to relative vibrational transition probabilities, were evaluated by the numerical integration procedure for the bands of the A2?3/2 - X2?3/2, C2? - X2?3/2 and D2? - X2? systems of the isotopic SbO molecule and for the B1? - X1?+ system of the isotopic SbP molecule, using a suitable potential.


1993 ◽  
Vol 58 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Narayanan Rajamanickam ◽  
Manuel Fernandez Gomez ◽  
Juan Jesus Lopez Gonzalez

The Franck-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by a more reliable numerical interogation procedure for the bands of b1Σ+ - X3Σ- system of the PF molecule, using a suitable potential. The dissociation energy, De = 318 kJ mol-1 for the electronic ground state of this molecule has been estimated by fitting the electronegativity function to the experimental potential energy curve.


Sign in / Sign up

Export Citation Format

Share Document