band system
Recently Published Documents


TOTAL DOCUMENTS

1033
(FIVE YEARS 37)

H-INDEX

59
(FIVE YEARS 3)

2022 ◽  
Vol 18 (67) ◽  
pp. 15-28
Author(s):  
Randall Gutiérrez-Vargas ◽  
José Pino-Ortega ◽  
Alexis Ugalde-Ramírez ◽  
Braulio Sánchez-Ureña ◽  
Luis Blanco-Romero ◽  
...  

This study aimed to compare physical and physiological demands in youth basketball players according to gender, playing positions, and match outcomes. 64 players (32 female and 32 male) from eight youth sub-elite basketball teams were monitored using an Ultra-Wide Band system and inertial measurement unit in three consecutive matches. The results showed some significant differences, although with magnitudes qualified as small. When the teams won, the guards covered a greater distance at 0-6 km/h than when they lost. When teams lost, the centers covered more distance at 12-18 km/h and 18-21 km/h. The winning female teams presented a lower maximal heart rate (HRmax) compared to the losing teams. The forwards of the winning teams performed greater efforts at 70-80% HRmax, while the forwards of losing teams performed more efforts at 90-95% HRmax. The greatest number of accelerations and decelerations were performed by the female guards and the male forwards. The number of jumps was higher in the male guards and forwards than in the female ones. HRmax was higher in the forwards of the female teams. Efforts at 80%-90% HRmax were higher in male centers. When the female teams won, they had a lower HRmax than when they lost. When efforts exceed 90% of HRmax the teams lost. In conclusion, despite the differences found, the effect of these contextual variables on physical and physiological demands is unclear. Nevertheless, knowing the game's requirements can help the design of training that enhances the performance of youth basketball players


2021 ◽  
Vol 14 (1) ◽  
pp. 155
Author(s):  
Yanyan Zhang ◽  
Sheng Chang ◽  
Robert Wang ◽  
Peng Li ◽  
Yongwei Zhang ◽  
...  

Quadrature-polarimetric synthetic aperture radar (quad-pol SAR) has extensive applications, including climate zones classification, extraction of surface roughness, soil moisture mapping, moving target indication, and rice mapping. Hybrid quad-pol SAR ameliorates the range ambiguity performance of conventional quad-pol SAR. However, the azimuth ambiguity of its cross-polarized (cross-pol) echo signals is serious, limiting the swath width of SAR. Therefore, this paper proposes a spaceborne weighted amplitude modulation (WAM) full-polarimetric (full-pol) SAR system, and it can suppress the azimuth ambiguity of hybrid quad-pol SAR. The performance boost of the azimuth ambiguity by the two imaging modes of the proposed SAR system is detailed and evaluated with the L-band system parameters. Moreover, the chirp scaling algorithm (CSA) is adopted to execute scene simulations for the two imaging modes. The results indicate that the proposed SAR system can effectively suppress the azimuth ambiguity of hybrid quad-pol SAR and verify the theoretical analysis.


2021 ◽  
Author(s):  
Yi-Cai Zhang

Abstract In this work, we investigate the bound states in a one-dimensional spin-1 flat band system with a Coulomb-like potential of type III, which has a unique non-vanishing matrix element in basis $|1\rangle$. It is found that, for such a kind of potential, there exists infinite bound states. Near the threshold of continuous spectrum, the bound state energy is consistent with the ordinary hydrogen-like atom energy level with Rydberg correction. In addition, the flat band has significant effects on the bound states. For example, there are infinite bound states which are generated from the flat band. Furthermore, when the potential is weak, the bound state energy is proportional to the potential strength $\alpha$. When the bound state energies are very near the flat band, they are inversely proportional to the natural number $n$ (e.g., $E_n\propto 1/n, n=1,2,3,...$). Further we find that the energy spectrum can be well described by quasi-classical approximation (WKB method). Finally, we give a critical potential strength $\alpha_c$ at which the bound state energy reaches the threshold of continuous spectrum. After crossing the threshold, the bound states in the continuum (BIC) would exist in such a flat band system.


2021 ◽  
Vol 20 ◽  
pp. 717-728
Author(s):  
Boris M. Shumilov

In this study, the method for decomposing splines of degree m and smoothness C^m-1 into a series of wavelets with zero moments is investigated. The system of linear algebraic equations connecting the coefficients of the spline expansion on the initial scale with the spline coefficients and wavelet coefficients on the embedded scale is obtained. The originality consists in the application of some preconditioner that reduces the system to a simpler band system of equations. Examples of applying the method to the cases of first-degree spline wavelets with two first zero moments and cubic spline wavelets with six first zero moments are presented. For the cubic case after splitting the system into even and odd rows, the resulting matrix acquires a seven-diagonals form with strict diagonal dominance, which makes it possible to apply an effective sweep method to its solution


2021 ◽  
Author(s):  
◽  
William Doonan

<p>We have studied the nature of unconventional superconductivity in the rare-earth nitride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding of the mechanisms that lead to such a phenomenon in an already extremely interesting material. An approximate low energy model has been introduced for SmN based on previous bandstructure calculation and recent experimental results. This consists of the non-dispersive 4f band associated with the samarium ion crossing through the dispersive 5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstructure we need only consider the majority-spin 5d and 4f bands which lead to an essentially spinless two band system. Starting from this two band system, we apply the k dot p method to it in order to create an effective model for the system. This effective model for the material acts as the platform from which we study the possible triplet superconducting pairing. Basing our pairing on the electron-phonon interaction we have postulated the existence of triplet pairing in the 5d band, from which we have successfully characterised the pair potential in this system through the self-consistency equation. The pair potential Delta_d could be solved analytically in a special case where the Fermi level was equal to the 4f band. In this case we find that above a threshold effective coupling strength the superconducting state is established and analytically known. In contrast to this result for the more general case where the Fermi level is different to the 4f band we numerically recover a solution that was exponential in the effective coupling strength which is similar to the pairing as we expect from the single band case. Analytic solutions in this case were not able to be found, however, we know that from our numerical investigations there will exist a solution for any effective coupling strength, contrasting with the special case where the pairing amplitude can disappear below a certain threshold. In conjunction to these results we also examined the situation where the 5d and 4f bands have hybridised together in order to search for unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the 5d band, this translates to hybrid pairing between electrons in the two hybridised bands. Results from the hybridised bands system show a new singlet-like pairing Delta_S which is even in k and singlet in the hybridised band indices. Preliminary numerical results suggest that this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands. The existence of such a pairing, originating from triplet pairing, has exciting implications for the robustness of the superconductivity in the presence of disorder and/or impurities.</p>


2021 ◽  
Author(s):  
◽  
William Doonan

<p>We have studied the nature of unconventional superconductivity in the rare-earth nitride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding of the mechanisms that lead to such a phenomenon in an already extremely interesting material. An approximate low energy model has been introduced for SmN based on previous bandstructure calculation and recent experimental results. This consists of the non-dispersive 4f band associated with the samarium ion crossing through the dispersive 5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstructure we need only consider the majority-spin 5d and 4f bands which lead to an essentially spinless two band system. Starting from this two band system, we apply the k dot p method to it in order to create an effective model for the system. This effective model for the material acts as the platform from which we study the possible triplet superconducting pairing. Basing our pairing on the electron-phonon interaction we have postulated the existence of triplet pairing in the 5d band, from which we have successfully characterised the pair potential in this system through the self-consistency equation. The pair potential Delta_d could be solved analytically in a special case where the Fermi level was equal to the 4f band. In this case we find that above a threshold effective coupling strength the superconducting state is established and analytically known. In contrast to this result for the more general case where the Fermi level is different to the 4f band we numerically recover a solution that was exponential in the effective coupling strength which is similar to the pairing as we expect from the single band case. Analytic solutions in this case were not able to be found, however, we know that from our numerical investigations there will exist a solution for any effective coupling strength, contrasting with the special case where the pairing amplitude can disappear below a certain threshold. In conjunction to these results we also examined the situation where the 5d and 4f bands have hybridised together in order to search for unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the 5d band, this translates to hybrid pairing between electrons in the two hybridised bands. Results from the hybridised bands system show a new singlet-like pairing Delta_S which is even in k and singlet in the hybridised band indices. Preliminary numerical results suggest that this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands. The existence of such a pairing, originating from triplet pairing, has exciting implications for the robustness of the superconductivity in the presence of disorder and/or impurities.</p>


2021 ◽  
Vol 923 (2) ◽  
pp. 234
Author(s):  
Jason J. Sorensen ◽  
Peter F. Bernath

Abstract The ZrO B1Π—X1Σ+ transition is an important opacity source in the near-infrared and optical spectrum of S-type stars. The 0–0, 0–1, 0–2, 1–0, 1–2, 1–3, 2–0, 2–1, 2–3, 2–4, 3–1, 3–4, and 4–2 bands of the 90Zr16O B1Π—X1Σ+ transition are reanalyzed using a high-temperature (2390 K) high-resolution (0.04 cm−1) emission spectrum collected at the National Solar Observatory (Kitt Peak). A modern spectroscopic analysis was performed using the PGOPHER program to provide updated spectroscopic constants and to produce a high-precision line list with line strengths based on an ab initio calculation of the transition dipole moment.


2021 ◽  
Author(s):  
Yi-Cai Zhang

Abstract In this work, we investigate the bound states in the continuum (BIC) of a one-dimensional spin-1 flat band system with a potential of type III, which has a unique non-vanishing matrix element in basis |1⟩. It is found that, for such a kind of potential, there exists an effective attractive potential well surrounded by infinitely high self-sustained barriers. Some bound states in the continuum (BIC) can appear for sufficiently strong potential. These bound states (BIC) are protected by the infinitely high potential barriers, which could not decay into the continuum. Taking a long-ranged Coulomb potential and a short-ranged exponential potential as two examples, the bound state energies are obtained. For a Coulomb potential, there exists a series of critical potential strength, near which the bound state energy can goes to infinite. For a sufficiently strong exponential potential, there exists two different bound states with a same number of wave function nodes. The existences of BIC protected by the self-sustained potential barriers is quite a universal phenomenon in the flat band system under a strong potential. A necessary condition for existence of BIC is that the maximum value of potential is larger than two times band gap.


Author(s):  
Kostas-Fanourios Nikolaou ◽  
Dimitris Uzunidis ◽  
Alexandros Stavdas ◽  
Gerasimos Pagiatakis

Sign in / Sign up

Export Citation Format

Share Document