equilibrium geometry
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 41)

H-INDEX

35
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Leonardo Evaristo de Sousa ◽  
Piotr de Silva

Thermally activated delayed fluorescence (TADF) is a phenomenon that relies on the upconversion of triplet excitons to singlet excitons by means of reverse intersystem crossing (rISC). It has been shown both experimentally and theoretically that the TADF mechanism depends on the interplay between charge transfer and local excitations. However, the difference between the diabatic and adiabatic character of the involved excited states is rarely discussed in the literature. Here, we develop a diabatization procedure to implement a 4-state model Hamiltonian to a set of TADF molecules. We provide physical interpretation for the Hamiltonian elements and show their dependence on the electronic state of the equilibrium geometry. We also demonstrate how vibrations affect TADF efficiency by modifying the diabatic decomposition of the molecule. Finally, we provide a simple model that connects the diabatic Hamiltonian to the electronic properties relevant to TADF and show how such relationship translates into different optimization strategies for rISC, fluorescence and overall TADF performance.


2021 ◽  
Vol 56 (4) ◽  
pp. 255-262
Author(s):  
U Habiba ◽  
A Alam ◽  
S Rahman ◽  
SUD Shamim ◽  
AA Piya

Paracetamol is a very popular medication used to treat pain and fever. IR spectra of paracetamol have been measured for powder crystals. Ab initio calculations of its equilibrium geometry and vibrational spectra were carried out for spectrum interpretation. Differences between the experimental IR spectra of crystalline samples have been analyzed. Variations of molecular structure from the isolated state to molecular crystal were estimated based on the difference between the optimized molecular parameters of free molecules and the experimental bond lengths and angles evaluated for the crystal forms of the title compounds. The role of hydrogen bonds in the structure of molecular crystals of paracetamol is investigated. Bangladesh J. Sci. Ind. Res.56(4), 255-262, 2021


Author(s):  
Steluta Gosav ◽  
Adriana Hodorogea ◽  
Dan Maftei

In the present paper, the chemical potential of four flavonoids i.e. apigenin, luteolin, quercetin, and myricetin, of interest in the pharmaceutical industry was investigated using molecular modelling. The equilibrium geometry of molecular structures was calculated in the gas phase and ground state by using B3LYP hybrid functional in conjunction with a 6-311G(d,p) basis set. In order to assess the chemical potential of investigated flavonoids, the main quantum molecular descriptors, such as the dipole moment, the energy of the highest/lowest occupied/unoccupied molecular orbital, the gap energy, the electronegativity, the chemical hardness/softness, and the electrophilicity index have been computed. Also, the influence of the hydroxylation degree of chemical compounds on the chemical potential is discussed.


Author(s):  
Fabien Pascale ◽  
Philippe D’Arco ◽  
Valentina Lacivita ◽  
Roberto Dovesi

Abstract The ferromagnetic and antiferromagnetic wavefunctions of four KMF3 (M= Mn, Fe, Co and Ni) perovskites have been obtained quantum-mechanically with the CRYSTAL code, by using the Hartree-Fock (HF) Hamiltonian and three flavours of DFT (PBE, B3LYP and PBE0) and an all-electron Gaussian type basis set. In the Fe and Co cases, with d6and d7occupation, the Jahn-Teller distortion of the cubic cell is as large as 0.12 Å. Various features of the superexchange interaction energies (SIE), namely additivity, dependence on the M-M distance, on the MFM̂ angle, and on the adopted functional, are explored. The contribution to SIE by the Coulomb, exchange and kinetic energy terms is analyzed. It is shown that, when using density functionals, SIE clearly correlates with the amount of exact (Hartree-Fock) exchange in the functional. The effect of SIE on the equilibrium geometry and volume of the unit cell is discussed, and it is shown that the key quantity is the spin polarization of the (closed shell) F ions along the M-F-M path. The effect of this magnetic pressure is evaluated quantitatively for the first time.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 916-934
Author(s):  
Tom J. P. Irons ◽  
Adam Garner ◽  
Andrew M. Teale

Stagnation graphs provide a useful tool to analyze the main topological features of the often complicated vector field associated with magnetically induced currents. Previously, these graphs have been constructed using response quantities appropriate for modest applied magnetic fields. We present an implementation capable of producing these graphs in arbitrarily strong magnetic fields, using current-density-functional theory. This enables us to study how the topology of the current vector field changes with the strength and orientation of the applied magnetic field. Applications to CH4, C2H2 and C2H4 are presented. In each case, we consider molecular geometries optimized in the presence of the magnetic field. The stagnation graphs reveal subtle changes to this vector field where the symmetry of the molecule remains constant. However, when the electronic state and symmetry of the corresponding equilibrium geometry changes with increasing field strength, the changes to the stagnation graph are extensive. We expect that the approach presented here will be helpful in interpreting changes in molecular structure and bonding in the strong-field regime.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maximilian Raisch ◽  
Wafa Maftuhin ◽  
Michael Walter ◽  
Michael Sommer

AbstractMechanochromic polymers are intriguing materials that allow to sense force of specimens under load. Most mechanochromic systems rely on covalent bond scission and hence are two-state systems with optically distinct “on” and “off” states where correlating force with wavelength is usually not possible. Translating force of different magnitude with gradually different wavelength of absorption or emission would open up new possibilities to map and understand force distributions in polymeric materials. Here, we present a mechanochromic donor-acceptor (DA) torsional spring that undergoes force-induced planarization during uniaxial elongation leading to red-shifted absorption and emission spectra. The DA spring is based on ortho-substituted diketopyrrolopyrrole (o-DPP). Covalent incorporation of o-DPP into a rigid yet ductile polyphenylene matrix allows to transduce sufficiently large stress to the DA spring. The mechanically induced deflection from equilibrium geometry of the DA spring is theoretically predicted, in agreement with experiments, and is fully reversible upon stress release.


2021 ◽  
pp. 1396-1403
Author(s):  
Rehab Majed Kubba ◽  
Nada Mohammed Al-Joborry

A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick K. Tamukong ◽  
Mark R. Hoffmann

The generalized Van Vleck second order multireference perturbation theory (GVVPT2) method was used to investigate the low-lying electronic states of Ni2. Because the nickel atom has an excitation energy of only 0.025 eV to its first excited state (the least in the first row of transition elements), Ni2 has a particularly large number of low-lying states. Full potential energy curves (PECs) of more than a dozen low-lying electronic states of Ni2, resulting from the atomic combinations 3F4 + 3F4 and 3D3 + 3D3, were computed. In agreement with previous theoretical studies, we found the lowest lying states of Ni2 to correlate with the 3D3 + 3D3 dissociation limit, and the holes in the d-subshells were in the subspace of delta orbitals (i.e., the so-dubbed δδ-states). In particular, the ground state was determined as X 1Γg and had spectroscopic constants: bond length (Re) = 2.26 Å, harmonic frequency (ωe) = 276.0 cm−1, and binding energy (De) = 1.75 eV; whereas the 1 1Σg+ excited state (with spectroscopic constants: Re = 2.26 Å, ωe = 276.8 cm−1, and De = 1.75) of the 3D3 + 3D3 dissociation channel lay at only 16.4 cm−1 (0.002 eV) above the ground state at the equilibrium geometry. Inclusion of scalar relativistic effects through the spin-free exact two component (sf-X2C) method reduced the bond lengths of both of these two states to 2.20 Å, and increased their binding energies to 1.95 eV and harmonic frequencies to 296.0 cm−1 for X 1Γg and 297.0 cm−1 for 1 1Σg+. These values are in good agreement with experimental values of Re = 2.1545 ± 0.0004 Å, ωe = 280 ± 20 cm−1, and D0 = 2.042 ± 0.002 eV for the ground state. All states considered within the 3F4 + 3F4 dissociation channel proved to be energetically high-lying and van der Waals-like in nature. In contrast to most previous theoretical studies of Ni2, full PECs of all considered electronic states of the molecule were produced.


2021 ◽  
Vol 18 (1) ◽  
pp. 0113
Author(s):  
Rehab Majid Kubba ◽  
Mustafa Alaa Mohammed ◽  
Luma S. Ahamed

A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiometric polarization measurements. The results revealed that the (%IE) for carbon steel corrosion by ADNQ2O is (89.88%). The obtained thermodynamic parameters support the physical adsorption mechanism. The adsorption followed the Langmuir isotherm. The surface change on carbon steel was studied using SEM (Scanning Electron Microscopy).


Sign in / Sign up

Export Citation Format

Share Document