Characterization of a cell wall beta-galactosidase of Cicer arietinum epicotyls involved in cell wall autolysis

1990 ◽  
Vol 80 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Berta Dopico ◽  
Gregorio Nicolas ◽  
Emilia Labrador
1979 ◽  
Vol 66 (10) ◽  
pp. 525-526 ◽  
Author(s):  
G. Touet ◽  
H. G. Aach
Keyword(s):  

2010 ◽  
Vol 98 (3) ◽  
pp. 648a
Author(s):  
Daniel Auguin ◽  
Yinshan Yang ◽  
Stephane Delbecq ◽  
Emilie Dumas ◽  
Virginie Molle ◽  
...  

2012 ◽  
Vol 393 (8) ◽  
pp. 767-775 ◽  
Author(s):  
Boris Tefsen ◽  
Ellen L. Lagendijk ◽  
Joohae Park ◽  
Michiel Akeroyd ◽  
Doreen Schachtschabel ◽  
...  

Abstract Aspergillus niger possesses a galactofuranosidase activity, however, the corresponding enzyme or gene encoding this enzyme has never been identified. As evidence is mounting that enzymes exist with affinity for both arabinofuranose and galactofuranose, we investigated the possibility that α-l-arabinofuranosidases, encoded by the abfA and abfB genes, are responsible for the galactofuranosidase activity of A. niger. Characterization of the recombinant AbfA and AbfB proteins revealed that both enzymes do not only hydrolyze p-nitrophenyl-α-l-arabinofuranoside (pNp-α-Araf) but are also capable of hydrolyzing p-nitrophenyl-β-d-galactofuranoside (pNp-β-Galf). Molecular modeling of the AbfB protein with pNp-β-Galf confirmed the possibility for AbfB to interact with this substrate, similarly as with pNp-α-Araf. We also show that galactomannan, a cell wall compound of A. niger, containing β-linked terminal and internal galactofuranosyl moieties, can be degraded by an enzyme activity that is present in the supernatant of inulin-grown A. niger. Interestingly, purified AbfA and AbfB did not show this hydrolyzing activity toward A. nigergalactomannan. In summary, our studies demonstrate that AbfA and AbfB, α-l-arabinofuranosidases from different families, both contain a galactofuranose (Galf)-hydrolyzing activity. In addition, our data support the presence of a Galf-hydrolase activity expressed by A. niger that is capable of degrading fungal galactomannan.


Sign in / Sign up

Export Citation Format

Share Document