The effect of heart rate controlled low resistance circuit weight training and endurance training on maximal aerobic power in sedentary adults

Author(s):  
H. Kaikkonen ◽  
M. Yrjämä ◽  
E. Siljander ◽  
P. Byman ◽  
R. Laukkanen
1998 ◽  
Vol 30 (Supplement) ◽  
pp. 200
Author(s):  
H. Kaikkonen ◽  
M. Yrj??m?? ◽  
P. Byman ◽  
E. Siljander ◽  
R. Laukkanen

1983 ◽  
Vol 54 (1) ◽  
pp. 113-117 ◽  
Author(s):  
M. N. Sawka ◽  
M. E. Foley ◽  
N. A. Pimental ◽  
M. M. Toner ◽  
K. B. Pandolf

The purpose of this investigation was to evaluate four protocols for their effectiveness in eliciting maximal aerobic power (peak VO2) during arm-crank exercise. Comparisons were made 1) between a continuous (CON) and an intermittent (INT) protocol (both employed a crank rate of 50 rpm) and 2) among the CON protocols employing crank rates of 30, 50, or 70 rpm. For the first group of experiments no significant (P greater than 0.05) differences were found between the CON and INT protocols for peak VO2, maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), or maximal blood lactate (LAmax) responses. For the second group of experiments, the CON-50 was compared with the CON-30 and CON-70 protocols. In comparison to the CON-50, significantly higher peak VO2 (+10%) and VEmax (+14%) responses were elicited by the CON-70 protocol, whereas significantly lower peak VO2 (-11%), VEmax (-23%), HRmax (-8%), and LAmax (-29%) responses were elicited by the CON-30 protocol. Of the arm-crank protocols examined the combination of a continuous design and a crank rate of 70 rpm provided the most effective protocol to elicit peak VO2 values.


Author(s):  
José-Antonio Salas-Montoro ◽  
Manuel Mateo March ◽  
Cristóbal Sánchez-Muñoz ◽  
Mikel Zabala

The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg–1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.


1982 ◽  
Vol 14 (2) ◽  
pp. 170 ◽  
Author(s):  
J. E. Wright ◽  
J. F. Patton ◽  
J. A. Vogel ◽  
R. P. Mello ◽  
R. M. Hayford ◽  
...  

1991 ◽  
Vol 70 (3) ◽  
pp. 1016-1023 ◽  
Author(s):  
F. K. Lotgering ◽  
M. B. van Doorn ◽  
P. C. Struijk ◽  
J. Pool ◽  
H. C. Wallenburg

This study was to determine whether pregnancy affects maximal aerobic power. We measured heart rate, O2 uptake (VO2), CO2 production (VCO2), and ventilation at rest and during bicycle (BE) and treadmill exercise (TE) tests with rapidly increasing exercise intensities at 16, 25, and 35 wk gestation and 7 wk after delivery. Maximal heart rate was slightly lower throughout pregnancy compared with the nonpregnant state during both BE [174 +/- 2 vs. 178 +/- 2 (SE) beats/min] and TE (178 +/- 2 vs. 183 +/- 2 beats/min). Maximal VO2 was unaffected by pregnancy during BE and TE (2.20 +/- 0.08, 2.16 +/- 0.08, 2.15 +/- 0.08, and 2.19 +/- 0.08 l/min for BE and 2.45 +/- 0.08, 2.38 +/- 0.09, 2.33 +/- 0.09, and 2.39 +/- 0.08 l/min for TE at 16, 25, and 35 wk gestation and 7 wk postpartum, respectively). As a result of increased VO2 at rest, the amount of O2 available for exercise (exercise minus rest) tended to decrease with advancing gestation, reaching statistical significance only during TE at 35 wk gestation (1.99 +/- 0.08 l/min vs. 2.10 +/- 0.08 l/min postpartum). Power showed a positive linear correlation with O2 availability during BE as well as TE, and the relationship was unaffected by pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document