elite cyclists
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 50)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
José-Antonio Salas-Montoro ◽  
Manuel Mateo March ◽  
Cristóbal Sánchez-Muñoz ◽  
Mikel Zabala

The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg–1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Peter Leo ◽  
Iñigo Mujika ◽  
Justin Lawley

PURPOSE: The COVID-19 pandemic and its associated mobility restrictions caused many athletes to adjust or reduce their usual training load. The aim of this study was to investigate how the COVID-19 restrictions affected training and performance physiology measures in U23 elite cyclists. METHODS: Twelve U23 elite cyclists (n = 12) participated in this study (mean ± SD: Age 21.2 ± 1.2 years; height 182.9 ± 4.7 cm; body mass 71.4 ± 6.5 kg). Training characteristics were assessed between 30 days pre, during, and post COVID-19 restrictions, respectively. The physiological assessment in the laboratory was 30 days pre and post COVID-19 restrictions and included maximum oxygen uptake (V̇O2max), peak power output for sprint (SprintPmax), and ramp incremental graded exercise (GXTPmax), as well as power output at ventilatory threshold (VT) and respiratory compensation point (RCP). RESULTS: Training load characteristics before, during, and after the lockdown remained statistically unchanged (p > 0.05) despite large effects (>0.8) with mean reductions of 4.7 to 25.0% during COVID-19 restrictions. There were no significant differences in maximal and submaximal power outputs, as well as relative and absolute V̇O2max between pre and post COVID-19 restrictions (p > 0.05) with small to moderate effects. DISCUSSION: These results indicate that COVID-19 restrictions did not negatively affect training characteristics and physiological performance measures in U23 elite cyclists for a period of <30 days. In contrast with recent reports on professional cyclists and other elite level athletes, these findings reveal that as long as athletes are able to maintain and/or slightly adapt their training routine, physiological performance variables remain stable.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3746
Author(s):  
Diego Fernández-Lázaro ◽  
Juan Mielgo-Ayuso ◽  
Miguel del Valle Soto ◽  
David P. Adams ◽  
Eduardo Gutiérrez-Abejón ◽  
...  

Multi-ingredient performance supplements (MIPS), ingested pre- or post-workout, have been shown to increase physiological level effects and integrated metabolic response on exercise. The purpose of this study was to determine the efficacy of pre-and post-training supplementation with its own MIPS, associated with CHO (1 g·kg−1) plus protein (0.3 g·kg−1) on exercise-related benchmarks across a training camp for elite cyclists. Thirty elite male cyclists participated in a randomized non-placebo-controlled trial for ten weeks assigned to one of three groups (n = 10 each): a control group treated with CHO plus protein after training (CG); a group treated with MIPS before training and a CHO plus protein after training, (PRE-MIPS); a group treated with CHO plus protein plus MIPS after training, (POST-MIPS). Performance parameters included (VO2max, peak; median and minimum power (W) and fatigue index (%)); hormonal response (Cortisol; Testosterone; and Testosterone/Cortisol ratio); and muscle biomarkers (Creatine kinase (CK), Lactate dehydrogenase (LDH), and Myoglobin (Mb)) were assessed. MIPS administered before or after training (p ≤ 0.05) was significantly influential in attenuating CK, LDH, and MB; stimulating T response and modulating C; and improved on all markers of exercise performance. These responses were greater when MIPS was administered post-workout.


Metabolomics ◽  
2021 ◽  
Vol 17 (7) ◽  
Author(s):  
Alain Paris ◽  
Boris Labrador ◽  
François-Xavier Lejeune ◽  
Cécile Canlet ◽  
Jérôme Molina ◽  
...  

2021 ◽  
Vol 131 (1) ◽  
pp. 34-35
Author(s):  
Luuk Hilkens ◽  
Pim Knuiman ◽  
Mathieu Heijboer ◽  
Robert Kempers ◽  
Asker E. Jeukendrup ◽  
...  
Keyword(s):  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nicki Winfield Almquist ◽  
Malene Wilhelmsen ◽  
Stian Ellefsen ◽  
Øyvind Sandbakk ◽  
Bent R. Rønnestad

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicki Winfield Almquist ◽  
Øyvind Sandbakk ◽  
Bent R. Rønnestad ◽  
Dionne Noordhof

Although the ability to sprint repeatedly is crucial in road cycling races, the changes in aerobic and anaerobic power when sprinting during prolonged cycling has not been investigated in competitive elite cyclists. Here, we used the gross efficiency (GE)-method to investigate: (1) the absolute and relative aerobic and anaerobic contributions during 3 × 30-s sprints included each hour during a 3-h low-intensity training (LIT)-session by 12 cyclists, and (2) how the energetic contribution during 4 × 30-s sprints is affected by a 14-d high-volume training camp with (SPR, n = 9) or without (CON, n = 9) inclusion of sprints in LIT-sessions. The aerobic power was calculated based on GE determined before, after sprints, or the average of the two, while the anaerobic power was calculated by subtracting the aerobic power from the total power output. When repeating 30-s sprints, the mean power output decreased with each sprint (p &lt; 0.001, ES:0.6–1.1), with the majority being attributed to a decrease in mean anaerobic power (first vs. second sprint: −36 ± 15 W, p &lt; 0.001, ES:0.7, first vs. third sprint: −58 ± 16 W, p &lt; 0.001, ES:1.0). Aerobic power only decreased during the third sprint (first vs. third sprint: −17 ± 5 W, p &lt; 0.001, ES:0.7, second vs. third sprint: 16 ± 5 W, p &lt; 0.001, ES:0.8). Mean power output was largely maintained between sets (first set: 786 ± 30 W vs. second set: 783 ± 30 W, p = 0.917, ES:0.1, vs. third set: 771 ± 30 W, p = 0.070, ES:0.3). After a 14-d high-volume training camp, mean power output during the 4 × 30-s sprints increased on average 25 ± 14 W in SPR (p &lt; 0.001, ES:0.2), which was 29 ± 20 W more than CON (p = 0.008, ES: 0.3). In SPR, mean anaerobic power and mean aerobic power increased by 15 ± 13 W (p = 0.026, ES:0.2) and by 9 ± 6 W (p = 0.004, ES:0.2), respectively, while both were unaltered in CON. In conclusion, moderate decreases in power within sets of repeated 30-s sprints are primarily due to a decrease in anaerobic power and to a lesser extent in aerobic power. However, the repeated sprint-ability (multiple sets) and corresponding energetic contribution are maintained during prolonged cycling in elite cyclists. Including a small number of sprints in LIT-sessions during a 14-d training camp improves sprint-ability mainly through improved anaerobic power.


Author(s):  
Chen Schreiber ◽  
Snait Tamir ◽  
Ron Golan ◽  
Ayelet Weinstein ◽  
Yitzhak Weinstein

Abstract Background Elite athletes may suffer from impaired immune function and gastro-intestinal (GI) symptoms, which may affect their health and may impede their performance. These symptoms may be reduced by multi-strain probiotic supplementation. Therefore, the aim of the current study is to examine the effects of probiotic supplementation on aerobic fitness characteristics, inflammatory markers and incidence and severity of GI symptoms in elite cyclists. Methods Twenty-seven male cyclists, ranked elite or category 1 level competitions, were randomly assigned to a multi-strain probiotic-supplemented group (E, n = 11) or placebo group (C, n = 16). All participants visited the laboratory at the beginning of the study and following 90 d of supplementation/placebo. Prior to testing, all participants completed a GI symptoms questionnaire and underwent physical and medical examination, and anthropometric measurements. Venous blood was drawn for inflammatory markers analysis. The cyclists then underwent maximal oxygen consumption (VO2max) test and time-to-fatigue (TTF) test at 85 % of maximal power, 3 h following the VO2max test. All testing procedures were repeated after 90 d of probiotic / placebo treatment (double blind design). Results Lower incidence of nausea, belching, and vomiting (P < 0.05) at rest, and decreased incidence of GI symptoms during training were found in E group vs. C Group, respectively (∆GI -0.27 ± 0.47 % vs. 0.08 ± 0.29 %, P = 0.03), no significant changes were observed in the incidence of total overall GI symptoms (∆GI -5.6 ± 14.7 % vs. 2.6 ± 11.6 %, P = 0.602) Mean rate of perceived exertion (RPE) values during the TTF were lower in E group (∆RPE: -0.3 ± 0.9 vs. 0.8 ± 1.5, P = 0.04). No significant changes were measured between and within groups in VO2max and TTF values, mean levels of C-reactive protein (CRP), IL-6-and tumor necrosis factor alpha (TNFα) values following treatment. Conclusions Probiotics supplementation may have beneficial effects on GI symptoms in elite cyclists. Future studies, using higher doses and during different training seasons, might help understanding the effects of probiotic supplementation on elite athletes’ health and performance. Trial registration NIH clinicaltrial.gov#NCT02756221 Registered 25 April 2016.


2021 ◽  
Vol 25 (2) ◽  
pp. 74-88
Author(s):  
Abdelkader Kharobi Abdelhamid ◽  
Said Aissa Khelifa ◽  
Abdelmalek Mohamed ◽  
Benglia Abderrezzak ◽  
Si Merabet Hadj Sahraoui

Background and Study Aim. The use of blood parameters in monitoring athletes is an essential but an unstandardized component of managing athletic preparation. This study aims to describe and evaluate typical measurements and responses observed while monitoring elite cyclist during a training camp. The reported observations might contribute in constituting a scientific support for other practitioners to employ. Material and Methods. 35 elite cyclists from the Algerian National team aged 16 – 23 years participated in this study. Peripheral fasting blood samples were collected in resting after 24 hrs of physical inactivity and outside competitions. Complete blood count (CBC) and hormonal index values (Cortisol, Testosterone, Probnp and TnT) were tested twice before and after the training camp. The statistical data were analysed by the SPSS software version 22.0. Results. The observed rates of change were significant (p<0,01, p<0,05) for most erythrocyte variables, except for leukocyte and platelet distribution levels. Hormonal values recorded for Troponin (↓92,78%, p=0,000) and Cortisol (↓11,85%, p=0,000) remained significantly as an  anticipatory response to competition. The responses of the ProBnp and testosterone were not statistically significant and experienced a different response with regards to their kinetics. Conclusion. This study is further support suggesting a viable approach to monitoring physical performance index in elite athletes. The results imply that reducing volume while increasing intensity of training just before competition can enhance performance during short preparation periods.


Sign in / Sign up

Export Citation Format

Share Document