Supplemental Material for Coarse-to-Fine Encoding of Spatial Frequency Information Into Visual Short-Term Memory for Faces but Impartial Decay

Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 156-156
Author(s):  
P Thompson ◽  
R Stone ◽  
E Walton

We have measured the retention of information about stimulus speed in visual short-term memory by measuring speed discrimination in a two-interval forced-choice task. We have also measured such discrimination in conditions where a ‘memory masker’ is presented during the interstimulus interval (ISI) in a fashion analogous to the experiment of Magnussen et al (1991 Vision Research31 1213 – 1219). Magnussen et al found that spatial frequency discrimination was disrupted when the mask had a spatial frequency that differed from the test spatial frequency by an octave or more. We have investigated the speed discrimination of 8 Hz, 1 cycle deg−1 drifting sine-wave gratings with the following drifting masks presented in the ISI: (i) 8 Hz 1 cycle deg−1, same direction as the test; (ii) 8 Hz, 8 cycles deg−1, opposite direction to the test; (iii) 8 Hz, 8 cycles deg−1, same direction as the test; (iv) 24 Hz, 3 cycles deg−1, same direction as the test. These masks were chosen to investigate whether the temporal frequency, the spatial frequency, the speed, or the direction of motion of the mask affected retention. We found that in none of these conditions was the discrimination of the test gratings impaired significantly. This pattern of results is therefore different from that found with spatial frequency discrimination and suggests that, whatever mechanism is responsible for the retention of information about speed, it is different from that responsible for the retention of information about spatial frequency.


Author(s):  
Kevin Dent

In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.


Author(s):  
Yuhong Jiang

Abstract. When two dot arrays are briefly presented, separated by a short interval of time, visual short-term memory of the first array is disrupted if the interval between arrays is shorter than 1300-1500 ms ( Brockmole, Wang, & Irwin, 2002 ). Here we investigated whether such a time window was triggered by the necessity to integrate arrays. Using a probe task we removed the need for integration but retained the requirement to represent the images. We found that a long time window was needed for performance to reach asymptote even when integration across images was not required. Furthermore, such window was lengthened if subjects had to remember the locations of the second array, but not if they only conducted a visual search among it. We suggest that a temporal window is required for consolidation of the first array, which is vulnerable to disruption by subsequent images that also need to be memorized.


2013 ◽  
Author(s):  
Deepna T. Devkar ◽  
Wei Ji Ma ◽  
Jeffrey S. Katz ◽  
Anthony A. Wright

Sign in / Sign up

Export Citation Format

Share Document