frequency discrimination
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 62)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
Vol 11 (4) ◽  
pp. 673-690
Author(s):  
Jordana C. Soares ◽  
Sangamanatha A. Veeranna ◽  
Vijay Parsa ◽  
Chris Allan ◽  
Winnie Ly ◽  
...  

Many hearing difficulties can be explained as a loss of audibility, a problem easily detected and treated using standard audiological procedures. Yet, hearing can be much poorer (or more impaired) than audibility predicts because of deficits in the suprathreshold mechanisms that encode the rapidly changing, spectral, temporal, and binaural aspects of the sound. The ability to evaluate these mechanisms requires well-defined stimuli and strict adherence to rigorous psychometric principles. This project reports on the comparison between a laboratory-based and a mobile system’s results for psychoacoustic assessment in adult listeners with normal hearing. A description of both systems employed is provided. Psychoacoustic tests include frequency discrimination, amplitude modulation detection, binaural encoding, and temporal gap detection. Results reported by the mobile system were not significantly different from those collected with the laboratory-based system for most of the tests and were consistent with those reported in the literature. The mobile system has the potential to be a feasible option for the assessment of suprathreshold auditory encoding abilities.


2021 ◽  
Author(s):  
Nathan Tardiff ◽  
Lalitta Suriya-Arunroj ◽  
Yale E. Cohen ◽  
Joshua I. Gold

AbstractThe varied effects of expectations on auditory perception are not well understood. For example, both top-down rules and bottom-up stimulus regularities generate expectations that can bias subsequent perceptual judgments. However, it is unknown whether these different sources of bias use the same or different computational and physiological mechanisms. We examined how rule-based and stimulus-based expectations influenced human subjects’ behavior and pupil-linked arousal, a marker of certain forms of expectation-based processing, during an auditory frequency-discrimination task. Rule-based cues biased choice and response times (RTs) toward the more-probable stimulus. In contrast, stimulus-based cues had a complex combination of effects, including choice and RT biases toward and away from the frequency of recently heard stimuli. These different behavioral patterns also had distinct computational signatures, including different modulations of key components of a novel form of a drift-diffusion model, and distinct physiological signatures, including substantial bias-dependent modulations of pupil size in response to rule-based but not stimulus-based cues. These results imply that different sources of expectations can modulate auditory perception via distinct mechanisms: one that uses arousal-linked, rule-based information and another that uses arousal-independent, stimulus-based information to bias the speed and accuracy of auditory perceptual decisions.


2021 ◽  
Author(s):  
◽  
Kaye McAulay

<p>The importance of temporal information versus place information in frequency analysis by the ear is a continuing controversy. This dissertation developes a temporal model which simulates human frequency discrimination. The model gives guantitative measures of performance for the discrimination of sinusoids in white gaussian noise. The model simulates human frequency discrimination performance as a function of frequency and signal-to-noise ratio. The model's predictions are based on the temporal intervals between the positive axis crossings of the stimulus. The histograms of these temporal intervals were used as the underlying distributions from which indices of discriminability were calculated. Human freguency discrimination data was obtained for five observers as a function of frequency and signal-to-noise ratio. The data were analysed using the method of Group-operating-characteristic (GOC) Analysis. This method of analysis statistically removes unique noise from data. The unique noise was removed by summing observers' ratings for identical stimuli. This method of analysis gave human frequency discrimination data with less unigue noise than any existing frequency data. The human data were used for evaluating the model. The GOC Analysis was also used to study the improvement in d' as a function of stimulus replications and signal-to-noise ratio. The model was a good fit to the human data at 250 Hz, for two signal-to-noise ratios. The model did not fit the data at 1000 Hz or 5000 Hz. There was some evidence of a transition occuring at 1000 Hz. This investigation supported the idea that human frequency discrimination relies on a temporal mechanism at low frequencies with a transition to some other mechanism at about lO00 Hz.</p>


2021 ◽  
Author(s):  
◽  
Alan J. Taylor

<p>The performances of observers in auditory experiments are likely to be affected by extraneous noise from physiological or neurological sources and also by decision noise. Attempts have been made to measure the characteristics of this noise, in particular its level relative to that of masking noise provided by the experimenter. This study investigated an alternative approach, a method of analysis which seeks to reduce the effects of extraneous noise on measures derived from experimental data. Group-Operating-Characteristic (GOC) analysis was described by Watson (1963) and investigated by Boven (1976). Boven distinguished between common and unique noise. GOC analysis seeks to reduce the effects of unique noise. In the analysis, ratings of the same stimulus on different occasions are sunned. The cumulative frequency distributions of the resulting variable define a GOC curve. This curve is analogous to an ROC curve, but since the effects of unique noise tend to be averaged out during the summation, the GOC is less influenced by extraneous noise. The amount of improvement depends on the relative variance of the unique and common noise (k). Higher levels of unique noise lead to greater improvement. In this study four frequency discrimination experiments were carried out with pigeons as observers, using a three-key operant procedure. In other experiments, computer-simulated observers were used. The first two pigeon experiments, and the simulations, were based on known distributions of common noise. The ROCs for the constructed distributions provided a standard with which the GOC curve could be compared. In all cases the analysis led to improvements in the measures of performance and increased the match of the experimental results and the ideal ROC. The amount of improvement, as well as reflecting the level of unique noise, depended on the number of response categories. With smaller numbers of categories, improvement was reduced and k was underestimated. Since the pigeon observers made only "yes" or "no" responses, the results for the pigeon experiments were compared with the results of simulations with known distributions in order to obtain more accurate estimates of k. The third and fourth pigeon experiments involved frequency discrimination tasks with a standard of 450 Hz and comparison frequencies of 500, 600, 700, 800 and 900 Hz, and 650 Hz, respectively. With the multiple comparison frequencies the results were very variable. This was due to the small number of trials for each frequency and the small number of replications. The results obtained with one comparison frequency were more orderly but, like those of the previous experiment, were impossible to distinguish from those which would be expected if there was no common noise. A final set of experiments was based on a hardware simulation. Signals first used in the fourth pigeon experiment were processed by a system made up of a filter, a zero-axis crossing detector and a simulated observer. The results of these experiments were compatible with the possibility that the amount of unique noise in the pigeon experiments overwhelmed any evidence of common noise.</p>


2021 ◽  
Author(s):  
◽  
Kaye McAulay

<p>The importance of temporal information versus place information in frequency analysis by the ear is a continuing controversy. This dissertation developes a temporal model which simulates human frequency discrimination. The model gives guantitative measures of performance for the discrimination of sinusoids in white gaussian noise. The model simulates human frequency discrimination performance as a function of frequency and signal-to-noise ratio. The model's predictions are based on the temporal intervals between the positive axis crossings of the stimulus. The histograms of these temporal intervals were used as the underlying distributions from which indices of discriminability were calculated. Human freguency discrimination data was obtained for five observers as a function of frequency and signal-to-noise ratio. The data were analysed using the method of Group-operating-characteristic (GOC) Analysis. This method of analysis statistically removes unique noise from data. The unique noise was removed by summing observers' ratings for identical stimuli. This method of analysis gave human frequency discrimination data with less unigue noise than any existing frequency data. The human data were used for evaluating the model. The GOC Analysis was also used to study the improvement in d' as a function of stimulus replications and signal-to-noise ratio. The model was a good fit to the human data at 250 Hz, for two signal-to-noise ratios. The model did not fit the data at 1000 Hz or 5000 Hz. There was some evidence of a transition occuring at 1000 Hz. This investigation supported the idea that human frequency discrimination relies on a temporal mechanism at low frequencies with a transition to some other mechanism at about lO00 Hz.</p>


2021 ◽  
Author(s):  
◽  
Robin Fraser Patchett

<p>To test the hypothesis that prior patterned or varied auditory experience was necessary for the development of auditory frequency discrimination and auditory pattern discrimination, groups of sprague-Dawley albino rats were deprived of patterned sound from birth by the novel technique of rearing them in 'white' noise. The sound deprived rats learned a frequency discrimination as easily as controls reared in varied sound conditions, but showed inferior performance on an auditory pattern discrimination task. Supporting experiments showed that the inferiority of varied sound deprived animals on the pattern discrimination task was not likely to have been due to their emotional state at the time of the testing nor to their inferiority in learning to respond in a discrimination task compared with non-deprived controls. Open-field testing showed that the sound deprived subjects did not differ from non-deprived controls in 'emotionality'. The sound deprived rats were not inferior, either, to controls on a complex visual discrimination task. Experiments were also carried out to explore the effect of various durations of patterned sound deprivation and the effect of the deprivation at various times in the life cycle of the rat on auditory pattern discrimination. The results of these experiments favoured an explanation for the effect of varied sound experience which proposed that patterned auditory discrimination development depended, simply, on prior experience with varied sound rather than an explanation which proposed that the effect depended on varied sound experience during a particular sensitive period in the life of the rat. The research involved a total of seven different experiments, the similarities in the findings of which when compared with those of other investigators working in the area of the effects of deprivation of patterned light on visual discriminations were noted. The present experiments support generalizations about the role of prior experience on later behaviour, based largely on experiments in the visual mode, by supplying evidence from another sensory mode.</p>


2021 ◽  
Author(s):  
◽  
Alan J. Taylor

<p>The performances of observers in auditory experiments are likely to be affected by extraneous noise from physiological or neurological sources and also by decision noise. Attempts have been made to measure the characteristics of this noise, in particular its level relative to that of masking noise provided by the experimenter. This study investigated an alternative approach, a method of analysis which seeks to reduce the effects of extraneous noise on measures derived from experimental data. Group-Operating-Characteristic (GOC) analysis was described by Watson (1963) and investigated by Boven (1976). Boven distinguished between common and unique noise. GOC analysis seeks to reduce the effects of unique noise. In the analysis, ratings of the same stimulus on different occasions are sunned. The cumulative frequency distributions of the resulting variable define a GOC curve. This curve is analogous to an ROC curve, but since the effects of unique noise tend to be averaged out during the summation, the GOC is less influenced by extraneous noise. The amount of improvement depends on the relative variance of the unique and common noise (k). Higher levels of unique noise lead to greater improvement. In this study four frequency discrimination experiments were carried out with pigeons as observers, using a three-key operant procedure. In other experiments, computer-simulated observers were used. The first two pigeon experiments, and the simulations, were based on known distributions of common noise. The ROCs for the constructed distributions provided a standard with which the GOC curve could be compared. In all cases the analysis led to improvements in the measures of performance and increased the match of the experimental results and the ideal ROC. The amount of improvement, as well as reflecting the level of unique noise, depended on the number of response categories. With smaller numbers of categories, improvement was reduced and k was underestimated. Since the pigeon observers made only "yes" or "no" responses, the results for the pigeon experiments were compared with the results of simulations with known distributions in order to obtain more accurate estimates of k. The third and fourth pigeon experiments involved frequency discrimination tasks with a standard of 450 Hz and comparison frequencies of 500, 600, 700, 800 and 900 Hz, and 650 Hz, respectively. With the multiple comparison frequencies the results were very variable. This was due to the small number of trials for each frequency and the small number of replications. The results obtained with one comparison frequency were more orderly but, like those of the previous experiment, were impossible to distinguish from those which would be expected if there was no common noise. A final set of experiments was based on a hardware simulation. Signals first used in the fourth pigeon experiment were processed by a system made up of a filter, a zero-axis crossing detector and a simulated observer. The results of these experiments were compatible with the possibility that the amount of unique noise in the pigeon experiments overwhelmed any evidence of common noise.</p>


2021 ◽  
Author(s):  
◽  
Robin Fraser Patchett

<p>To test the hypothesis that prior patterned or varied auditory experience was necessary for the development of auditory frequency discrimination and auditory pattern discrimination, groups of sprague-Dawley albino rats were deprived of patterned sound from birth by the novel technique of rearing them in 'white' noise. The sound deprived rats learned a frequency discrimination as easily as controls reared in varied sound conditions, but showed inferior performance on an auditory pattern discrimination task. Supporting experiments showed that the inferiority of varied sound deprived animals on the pattern discrimination task was not likely to have been due to their emotional state at the time of the testing nor to their inferiority in learning to respond in a discrimination task compared with non-deprived controls. Open-field testing showed that the sound deprived subjects did not differ from non-deprived controls in 'emotionality'. The sound deprived rats were not inferior, either, to controls on a complex visual discrimination task. Experiments were also carried out to explore the effect of various durations of patterned sound deprivation and the effect of the deprivation at various times in the life cycle of the rat on auditory pattern discrimination. The results of these experiments favoured an explanation for the effect of varied sound experience which proposed that patterned auditory discrimination development depended, simply, on prior experience with varied sound rather than an explanation which proposed that the effect depended on varied sound experience during a particular sensitive period in the life of the rat. The research involved a total of seven different experiments, the similarities in the findings of which when compared with those of other investigators working in the area of the effects of deprivation of patterned light on visual discriminations were noted. The present experiments support generalizations about the role of prior experience on later behaviour, based largely on experiments in the visual mode, by supplying evidence from another sensory mode.</p>


2021 ◽  
Author(s):  
Jack De Havas ◽  
Sho Ito ◽  
Sven Bestmann ◽  
Hiroaki Gomi

The sensation of directional forces and their associated sensorimotor commands are inextricably intertwined, complicating the identification of brain circuits responsible for tactile pulling sensations. One hypothesis is that, like tactile frequency discrimination, pulling sensations are generated by early sensory-frontal activity. Alternatively, they may be generated later in the somatosensory association cortex. To dissociate these accounts and uncouple the pulling sensation from unrelated but correlated sensory and motor processing, we combined high-density EEG with an oddball paradigm and asymmetric vibration, which creates an illusory sensation of the hand being directionally pulled. Oddballs that created a pulling sensation in the opposite direction to common stimuli were compared to the same oddballs in the context of neutral common stimuli (symmetric vibration) and to neutral oddballs. Brain responses to having directional pulling expectations violated by directional stimuli were therefore isolated. Contrary to the sensory-frontal account, frontal N140 brain activity was actually larger for neutral than pulling oddballs. Instead, pulling sensations were associated with amplitude and latency modulations of midline P200 and P3b potentials, and specifically, to contralateral parietal lobe activity 280ms post-stimulus. The timing of this activity suggested pulling sensations involve spatial processing, such as tactile remapping between coordinate frames. Source localization showed this activity to be centered on the postcentral sulcus, superior parietal lobule and intraparietal sulcus, suggesting that pulling sensations arise via the processing of body position, tactile orientation and peripersonal space. Our results demonstrate how tactile illusions can uniquely disambiguate parietal contributions to somatosensation by removing unrelated sensory processing.


Author(s):  
E. Sebastian Lelo de Larrea-Mancera ◽  
Mark A. Philipp ◽  
Trevor Stavropoulos ◽  
Audrey Anna Carrillo ◽  
Sierra Cheung ◽  
...  

AbstractUnderstanding speech in the presence of acoustical competition is a major complaint of those with hearing difficulties. Here, a novel perceptual learning game was tested for its effectiveness in reducing difficulties with hearing speech in competition. The game was designed to train a mixture of auditory processing skills thought to underlie speech in competition, such as spectral-temporal processing, sound localization, and auditory working memory. Training on these skills occurred both in quiet and in competition with noise. Thirty college-aged participants without any known hearing difficulties were assigned either to this mixed-training condition or an active control consisting of frequency discrimination training within the same gamified setting. To assess training effectiveness, tests of speech in competition (primary outcome), as well as basic supra-threshold auditory processing and cognitive processing abilities (secondary outcomes) were administered before and after training. Results suggest modest improvements on speech in competition tests in the mixed-training compared to the frequency-discrimination control condition (Cohen’s d = 0.68). While the sample is small, and in normally hearing individuals, these data suggest promise of future study in populations with hearing difficulties.


Sign in / Sign up

Export Citation Format

Share Document